Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  caratheodorylem1 Structured version   Visualization version   GIF version

Theorem caratheodorylem1 41242
Description: Lemma used to prove that Caratheodory's construction is sigma-additive. This is the proof of the statement in the middle of Step (e) in the proof of Theorem 113C of [Fremlin1] p. 21. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
caratheodorylem1.o (𝜑𝑂 ∈ OutMeas)
caratheodorylem1.s 𝑆 = (CaraGen‘𝑂)
caratheodorylem1.z 𝑍 = (ℤ𝑀)
caratheodorylem1.e (𝜑𝐸:𝑍𝑆)
caratheodorylem1.dj (𝜑Disj 𝑛𝑍 (𝐸𝑛))
caratheodorylem1.g 𝐺 = (𝑛𝑍 𝑖 ∈ (𝑀...𝑛)(𝐸𝑖))
caratheodorylem1.n (𝜑𝑁 ∈ (ℤ𝑀))
Assertion
Ref Expression
caratheodorylem1 (𝜑 → (𝑂‘(𝐺𝑁)) = (Σ^‘(𝑛 ∈ (𝑀...𝑁) ↦ (𝑂‘(𝐸𝑛)))))
Distinct variable groups:   𝑖,𝐸,𝑛   𝑖,𝐺,𝑛   𝑖,𝑀,𝑛   𝑖,𝑁,𝑛   𝑖,𝑂,𝑛   𝑛,𝑍   𝜑,𝑖,𝑛
Allowed substitution hints:   𝑆(𝑖,𝑛)   𝑍(𝑖)

Proof of Theorem caratheodorylem1
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 caratheodorylem1.n . . 3 (𝜑𝑁 ∈ (ℤ𝑀))
2 eluzfz2 12538 . . 3 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ (𝑀...𝑁))
31, 2syl 17 . 2 (𝜑𝑁 ∈ (𝑀...𝑁))
4 id 22 . 2 (𝜑𝜑)
5 fveq2 6348 . . . . . 6 (𝑗 = 𝑀 → (𝐺𝑗) = (𝐺𝑀))
65fveq2d 6352 . . . . 5 (𝑗 = 𝑀 → (𝑂‘(𝐺𝑗)) = (𝑂‘(𝐺𝑀)))
7 oveq2 6817 . . . . . . 7 (𝑗 = 𝑀 → (𝑀...𝑗) = (𝑀...𝑀))
87mpteq1d 4886 . . . . . 6 (𝑗 = 𝑀 → (𝑛 ∈ (𝑀...𝑗) ↦ (𝑂‘(𝐸𝑛))) = (𝑛 ∈ (𝑀...𝑀) ↦ (𝑂‘(𝐸𝑛))))
98fveq2d 6352 . . . . 5 (𝑗 = 𝑀 → (Σ^‘(𝑛 ∈ (𝑀...𝑗) ↦ (𝑂‘(𝐸𝑛)))) = (Σ^‘(𝑛 ∈ (𝑀...𝑀) ↦ (𝑂‘(𝐸𝑛)))))
106, 9eqeq12d 2771 . . . 4 (𝑗 = 𝑀 → ((𝑂‘(𝐺𝑗)) = (Σ^‘(𝑛 ∈ (𝑀...𝑗) ↦ (𝑂‘(𝐸𝑛)))) ↔ (𝑂‘(𝐺𝑀)) = (Σ^‘(𝑛 ∈ (𝑀...𝑀) ↦ (𝑂‘(𝐸𝑛))))))
1110imbi2d 329 . . 3 (𝑗 = 𝑀 → ((𝜑 → (𝑂‘(𝐺𝑗)) = (Σ^‘(𝑛 ∈ (𝑀...𝑗) ↦ (𝑂‘(𝐸𝑛))))) ↔ (𝜑 → (𝑂‘(𝐺𝑀)) = (Σ^‘(𝑛 ∈ (𝑀...𝑀) ↦ (𝑂‘(𝐸𝑛)))))))
12 fveq2 6348 . . . . . 6 (𝑗 = 𝑖 → (𝐺𝑗) = (𝐺𝑖))
1312fveq2d 6352 . . . . 5 (𝑗 = 𝑖 → (𝑂‘(𝐺𝑗)) = (𝑂‘(𝐺𝑖)))
14 oveq2 6817 . . . . . . 7 (𝑗 = 𝑖 → (𝑀...𝑗) = (𝑀...𝑖))
1514mpteq1d 4886 . . . . . 6 (𝑗 = 𝑖 → (𝑛 ∈ (𝑀...𝑗) ↦ (𝑂‘(𝐸𝑛))) = (𝑛 ∈ (𝑀...𝑖) ↦ (𝑂‘(𝐸𝑛))))
1615fveq2d 6352 . . . . 5 (𝑗 = 𝑖 → (Σ^‘(𝑛 ∈ (𝑀...𝑗) ↦ (𝑂‘(𝐸𝑛)))) = (Σ^‘(𝑛 ∈ (𝑀...𝑖) ↦ (𝑂‘(𝐸𝑛)))))
1713, 16eqeq12d 2771 . . . 4 (𝑗 = 𝑖 → ((𝑂‘(𝐺𝑗)) = (Σ^‘(𝑛 ∈ (𝑀...𝑗) ↦ (𝑂‘(𝐸𝑛)))) ↔ (𝑂‘(𝐺𝑖)) = (Σ^‘(𝑛 ∈ (𝑀...𝑖) ↦ (𝑂‘(𝐸𝑛))))))
1817imbi2d 329 . . 3 (𝑗 = 𝑖 → ((𝜑 → (𝑂‘(𝐺𝑗)) = (Σ^‘(𝑛 ∈ (𝑀...𝑗) ↦ (𝑂‘(𝐸𝑛))))) ↔ (𝜑 → (𝑂‘(𝐺𝑖)) = (Σ^‘(𝑛 ∈ (𝑀...𝑖) ↦ (𝑂‘(𝐸𝑛)))))))
19 fveq2 6348 . . . . . 6 (𝑗 = (𝑖 + 1) → (𝐺𝑗) = (𝐺‘(𝑖 + 1)))
2019fveq2d 6352 . . . . 5 (𝑗 = (𝑖 + 1) → (𝑂‘(𝐺𝑗)) = (𝑂‘(𝐺‘(𝑖 + 1))))
21 oveq2 6817 . . . . . . 7 (𝑗 = (𝑖 + 1) → (𝑀...𝑗) = (𝑀...(𝑖 + 1)))
2221mpteq1d 4886 . . . . . 6 (𝑗 = (𝑖 + 1) → (𝑛 ∈ (𝑀...𝑗) ↦ (𝑂‘(𝐸𝑛))) = (𝑛 ∈ (𝑀...(𝑖 + 1)) ↦ (𝑂‘(𝐸𝑛))))
2322fveq2d 6352 . . . . 5 (𝑗 = (𝑖 + 1) → (Σ^‘(𝑛 ∈ (𝑀...𝑗) ↦ (𝑂‘(𝐸𝑛)))) = (Σ^‘(𝑛 ∈ (𝑀...(𝑖 + 1)) ↦ (𝑂‘(𝐸𝑛)))))
2420, 23eqeq12d 2771 . . . 4 (𝑗 = (𝑖 + 1) → ((𝑂‘(𝐺𝑗)) = (Σ^‘(𝑛 ∈ (𝑀...𝑗) ↦ (𝑂‘(𝐸𝑛)))) ↔ (𝑂‘(𝐺‘(𝑖 + 1))) = (Σ^‘(𝑛 ∈ (𝑀...(𝑖 + 1)) ↦ (𝑂‘(𝐸𝑛))))))
2524imbi2d 329 . . 3 (𝑗 = (𝑖 + 1) → ((𝜑 → (𝑂‘(𝐺𝑗)) = (Σ^‘(𝑛 ∈ (𝑀...𝑗) ↦ (𝑂‘(𝐸𝑛))))) ↔ (𝜑 → (𝑂‘(𝐺‘(𝑖 + 1))) = (Σ^‘(𝑛 ∈ (𝑀...(𝑖 + 1)) ↦ (𝑂‘(𝐸𝑛)))))))
26 fveq2 6348 . . . . . 6 (𝑗 = 𝑁 → (𝐺𝑗) = (𝐺𝑁))
2726fveq2d 6352 . . . . 5 (𝑗 = 𝑁 → (𝑂‘(𝐺𝑗)) = (𝑂‘(𝐺𝑁)))
28 oveq2 6817 . . . . . . 7 (𝑗 = 𝑁 → (𝑀...𝑗) = (𝑀...𝑁))
2928mpteq1d 4886 . . . . . 6 (𝑗 = 𝑁 → (𝑛 ∈ (𝑀...𝑗) ↦ (𝑂‘(𝐸𝑛))) = (𝑛 ∈ (𝑀...𝑁) ↦ (𝑂‘(𝐸𝑛))))
3029fveq2d 6352 . . . . 5 (𝑗 = 𝑁 → (Σ^‘(𝑛 ∈ (𝑀...𝑗) ↦ (𝑂‘(𝐸𝑛)))) = (Σ^‘(𝑛 ∈ (𝑀...𝑁) ↦ (𝑂‘(𝐸𝑛)))))
3127, 30eqeq12d 2771 . . . 4 (𝑗 = 𝑁 → ((𝑂‘(𝐺𝑗)) = (Σ^‘(𝑛 ∈ (𝑀...𝑗) ↦ (𝑂‘(𝐸𝑛)))) ↔ (𝑂‘(𝐺𝑁)) = (Σ^‘(𝑛 ∈ (𝑀...𝑁) ↦ (𝑂‘(𝐸𝑛))))))
3231imbi2d 329 . . 3 (𝑗 = 𝑁 → ((𝜑 → (𝑂‘(𝐺𝑗)) = (Σ^‘(𝑛 ∈ (𝑀...𝑗) ↦ (𝑂‘(𝐸𝑛))))) ↔ (𝜑 → (𝑂‘(𝐺𝑁)) = (Σ^‘(𝑛 ∈ (𝑀...𝑁) ↦ (𝑂‘(𝐸𝑛)))))))
33 eluzel2 11880 . . . . . . . . 9 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
341, 33syl 17 . . . . . . . 8 (𝜑𝑀 ∈ ℤ)
35 fzsn 12572 . . . . . . . 8 (𝑀 ∈ ℤ → (𝑀...𝑀) = {𝑀})
3634, 35syl 17 . . . . . . 7 (𝜑 → (𝑀...𝑀) = {𝑀})
3736mpteq1d 4886 . . . . . 6 (𝜑 → (𝑛 ∈ (𝑀...𝑀) ↦ (𝑂‘(𝐸𝑛))) = (𝑛 ∈ {𝑀} ↦ (𝑂‘(𝐸𝑛))))
3837fveq2d 6352 . . . . 5 (𝜑 → (Σ^‘(𝑛 ∈ (𝑀...𝑀) ↦ (𝑂‘(𝐸𝑛)))) = (Σ^‘(𝑛 ∈ {𝑀} ↦ (𝑂‘(𝐸𝑛)))))
39 caratheodorylem1.o . . . . . . . . 9 (𝜑𝑂 ∈ OutMeas)
4039adantr 472 . . . . . . . 8 ((𝜑𝑛 ∈ {𝑀}) → 𝑂 ∈ OutMeas)
41 eqid 2756 . . . . . . . 8 dom 𝑂 = dom 𝑂
42 caratheodorylem1.s . . . . . . . . . . . 12 𝑆 = (CaraGen‘𝑂)
4342caragenss 41220 . . . . . . . . . . 11 (𝑂 ∈ OutMeas → 𝑆 ⊆ dom 𝑂)
4440, 43syl 17 . . . . . . . . . 10 ((𝜑𝑛 ∈ {𝑀}) → 𝑆 ⊆ dom 𝑂)
45 caratheodorylem1.e . . . . . . . . . . . 12 (𝜑𝐸:𝑍𝑆)
4645adantr 472 . . . . . . . . . . 11 ((𝜑𝑛 ∈ {𝑀}) → 𝐸:𝑍𝑆)
47 elsni 4334 . . . . . . . . . . . . 13 (𝑛 ∈ {𝑀} → 𝑛 = 𝑀)
4847adantl 473 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ {𝑀}) → 𝑛 = 𝑀)
49 uzid 11890 . . . . . . . . . . . . . . 15 (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ𝑀))
5034, 49syl 17 . . . . . . . . . . . . . 14 (𝜑𝑀 ∈ (ℤ𝑀))
51 caratheodorylem1.z . . . . . . . . . . . . . 14 𝑍 = (ℤ𝑀)
5250, 51syl6eleqr 2846 . . . . . . . . . . . . 13 (𝜑𝑀𝑍)
5352adantr 472 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ {𝑀}) → 𝑀𝑍)
5448, 53eqeltrd 2835 . . . . . . . . . . 11 ((𝜑𝑛 ∈ {𝑀}) → 𝑛𝑍)
5546, 54ffvelrnd 6519 . . . . . . . . . 10 ((𝜑𝑛 ∈ {𝑀}) → (𝐸𝑛) ∈ 𝑆)
5644, 55sseldd 3741 . . . . . . . . 9 ((𝜑𝑛 ∈ {𝑀}) → (𝐸𝑛) ∈ dom 𝑂)
57 elssuni 4615 . . . . . . . . 9 ((𝐸𝑛) ∈ dom 𝑂 → (𝐸𝑛) ⊆ dom 𝑂)
5856, 57syl 17 . . . . . . . 8 ((𝜑𝑛 ∈ {𝑀}) → (𝐸𝑛) ⊆ dom 𝑂)
5940, 41, 58omecl 41219 . . . . . . 7 ((𝜑𝑛 ∈ {𝑀}) → (𝑂‘(𝐸𝑛)) ∈ (0[,]+∞))
60 eqid 2756 . . . . . . 7 (𝑛 ∈ {𝑀} ↦ (𝑂‘(𝐸𝑛))) = (𝑛 ∈ {𝑀} ↦ (𝑂‘(𝐸𝑛)))
6159, 60fmptd 6544 . . . . . 6 (𝜑 → (𝑛 ∈ {𝑀} ↦ (𝑂‘(𝐸𝑛))):{𝑀}⟶(0[,]+∞))
6234, 61sge0sn 41095 . . . . 5 (𝜑 → (Σ^‘(𝑛 ∈ {𝑀} ↦ (𝑂‘(𝐸𝑛)))) = ((𝑛 ∈ {𝑀} ↦ (𝑂‘(𝐸𝑛)))‘𝑀))
63 eqidd 2757 . . . . . 6 (𝜑 → (𝑛 ∈ {𝑀} ↦ (𝑂‘(𝐸𝑛))) = (𝑛 ∈ {𝑀} ↦ (𝑂‘(𝐸𝑛))))
6436iuneq1d 4693 . . . . . . . . . 10 (𝜑 𝑖 ∈ (𝑀...𝑀)(𝐸𝑖) = 𝑖 ∈ {𝑀} (𝐸𝑖))
65 fveq2 6348 . . . . . . . . . . . 12 (𝑖 = 𝑀 → (𝐸𝑖) = (𝐸𝑀))
6665iunxsng 4750 . . . . . . . . . . 11 (𝑀𝑍 𝑖 ∈ {𝑀} (𝐸𝑖) = (𝐸𝑀))
6752, 66syl 17 . . . . . . . . . 10 (𝜑 𝑖 ∈ {𝑀} (𝐸𝑖) = (𝐸𝑀))
68 eqidd 2757 . . . . . . . . . 10 (𝜑 → (𝐸𝑀) = (𝐸𝑀))
6964, 67, 683eqtrrd 2795 . . . . . . . . 9 (𝜑 → (𝐸𝑀) = 𝑖 ∈ (𝑀...𝑀)(𝐸𝑖))
7069adantr 472 . . . . . . . 8 ((𝜑𝑛 = 𝑀) → (𝐸𝑀) = 𝑖 ∈ (𝑀...𝑀)(𝐸𝑖))
71 fveq2 6348 . . . . . . . . 9 (𝑛 = 𝑀 → (𝐸𝑛) = (𝐸𝑀))
7271adantl 473 . . . . . . . 8 ((𝜑𝑛 = 𝑀) → (𝐸𝑛) = (𝐸𝑀))
73 caratheodorylem1.g . . . . . . . . . . 11 𝐺 = (𝑛𝑍 𝑖 ∈ (𝑀...𝑛)(𝐸𝑖))
7473a1i 11 . . . . . . . . . 10 (𝜑𝐺 = (𝑛𝑍 𝑖 ∈ (𝑀...𝑛)(𝐸𝑖)))
75 oveq2 6817 . . . . . . . . . . . 12 (𝑛 = 𝑀 → (𝑀...𝑛) = (𝑀...𝑀))
7675iuneq1d 4693 . . . . . . . . . . 11 (𝑛 = 𝑀 𝑖 ∈ (𝑀...𝑛)(𝐸𝑖) = 𝑖 ∈ (𝑀...𝑀)(𝐸𝑖))
7776adantl 473 . . . . . . . . . 10 ((𝜑𝑛 = 𝑀) → 𝑖 ∈ (𝑀...𝑛)(𝐸𝑖) = 𝑖 ∈ (𝑀...𝑀)(𝐸𝑖))
78 ovex 6837 . . . . . . . . . . . 12 (𝑀...𝑀) ∈ V
79 fvex 6358 . . . . . . . . . . . 12 (𝐸𝑖) ∈ V
8078, 79iunex 7308 . . . . . . . . . . 11 𝑖 ∈ (𝑀...𝑀)(𝐸𝑖) ∈ V
8180a1i 11 . . . . . . . . . 10 (𝜑 𝑖 ∈ (𝑀...𝑀)(𝐸𝑖) ∈ V)
8274, 77, 52, 81fvmptd 6446 . . . . . . . . 9 (𝜑 → (𝐺𝑀) = 𝑖 ∈ (𝑀...𝑀)(𝐸𝑖))
8382adantr 472 . . . . . . . 8 ((𝜑𝑛 = 𝑀) → (𝐺𝑀) = 𝑖 ∈ (𝑀...𝑀)(𝐸𝑖))
8470, 72, 833eqtr4d 2800 . . . . . . 7 ((𝜑𝑛 = 𝑀) → (𝐸𝑛) = (𝐺𝑀))
8584fveq2d 6352 . . . . . 6 ((𝜑𝑛 = 𝑀) → (𝑂‘(𝐸𝑛)) = (𝑂‘(𝐺𝑀)))
86 snidg 4347 . . . . . . 7 (𝑀𝑍𝑀 ∈ {𝑀})
8752, 86syl 17 . . . . . 6 (𝜑𝑀 ∈ {𝑀})
88 fvexd 6360 . . . . . 6 (𝜑 → (𝑂‘(𝐺𝑀)) ∈ V)
8963, 85, 87, 88fvmptd 6446 . . . . 5 (𝜑 → ((𝑛 ∈ {𝑀} ↦ (𝑂‘(𝐸𝑛)))‘𝑀) = (𝑂‘(𝐺𝑀)))
9038, 62, 893eqtrrd 2795 . . . 4 (𝜑 → (𝑂‘(𝐺𝑀)) = (Σ^‘(𝑛 ∈ (𝑀...𝑀) ↦ (𝑂‘(𝐸𝑛)))))
9190a1i 11 . . 3 (𝑁 ∈ (ℤ𝑀) → (𝜑 → (𝑂‘(𝐺𝑀)) = (Σ^‘(𝑛 ∈ (𝑀...𝑀) ↦ (𝑂‘(𝐸𝑛))))))
92 simp3 1133 . . . . 5 ((𝑖 ∈ (𝑀..^𝑁) ∧ (𝜑 → (𝑂‘(𝐺𝑖)) = (Σ^‘(𝑛 ∈ (𝑀...𝑖) ↦ (𝑂‘(𝐸𝑛))))) ∧ 𝜑) → 𝜑)
93 simp1 1131 . . . . 5 ((𝑖 ∈ (𝑀..^𝑁) ∧ (𝜑 → (𝑂‘(𝐺𝑖)) = (Σ^‘(𝑛 ∈ (𝑀...𝑖) ↦ (𝑂‘(𝐸𝑛))))) ∧ 𝜑) → 𝑖 ∈ (𝑀..^𝑁))
94 id 22 . . . . . . 7 ((𝜑 → (𝑂‘(𝐺𝑖)) = (Σ^‘(𝑛 ∈ (𝑀...𝑖) ↦ (𝑂‘(𝐸𝑛))))) → (𝜑 → (𝑂‘(𝐺𝑖)) = (Σ^‘(𝑛 ∈ (𝑀...𝑖) ↦ (𝑂‘(𝐸𝑛))))))
9594imp 444 . . . . . 6 (((𝜑 → (𝑂‘(𝐺𝑖)) = (Σ^‘(𝑛 ∈ (𝑀...𝑖) ↦ (𝑂‘(𝐸𝑛))))) ∧ 𝜑) → (𝑂‘(𝐺𝑖)) = (Σ^‘(𝑛 ∈ (𝑀...𝑖) ↦ (𝑂‘(𝐸𝑛)))))
96953adant1 1125 . . . . 5 ((𝑖 ∈ (𝑀..^𝑁) ∧ (𝜑 → (𝑂‘(𝐺𝑖)) = (Σ^‘(𝑛 ∈ (𝑀...𝑖) ↦ (𝑂‘(𝐸𝑛))))) ∧ 𝜑) → (𝑂‘(𝐺𝑖)) = (Σ^‘(𝑛 ∈ (𝑀...𝑖) ↦ (𝑂‘(𝐸𝑛)))))
97 elfzoel1 12658 . . . . . . . . . . . . . . . 16 (𝑖 ∈ (𝑀..^𝑁) → 𝑀 ∈ ℤ)
98 elfzoelz 12660 . . . . . . . . . . . . . . . . 17 (𝑖 ∈ (𝑀..^𝑁) → 𝑖 ∈ ℤ)
9998peano2zd 11673 . . . . . . . . . . . . . . . 16 (𝑖 ∈ (𝑀..^𝑁) → (𝑖 + 1) ∈ ℤ)
10097, 99, 993jca 1123 . . . . . . . . . . . . . . 15 (𝑖 ∈ (𝑀..^𝑁) → (𝑀 ∈ ℤ ∧ (𝑖 + 1) ∈ ℤ ∧ (𝑖 + 1) ∈ ℤ))
10197zred 11670 . . . . . . . . . . . . . . . 16 (𝑖 ∈ (𝑀..^𝑁) → 𝑀 ∈ ℝ)
10299zred 11670 . . . . . . . . . . . . . . . 16 (𝑖 ∈ (𝑀..^𝑁) → (𝑖 + 1) ∈ ℝ)
10398zred 11670 . . . . . . . . . . . . . . . . 17 (𝑖 ∈ (𝑀..^𝑁) → 𝑖 ∈ ℝ)
104 elfzole1 12668 . . . . . . . . . . . . . . . . 17 (𝑖 ∈ (𝑀..^𝑁) → 𝑀𝑖)
105103ltp1d 11142 . . . . . . . . . . . . . . . . 17 (𝑖 ∈ (𝑀..^𝑁) → 𝑖 < (𝑖 + 1))
106101, 103, 102, 104, 105lelttrd 10383 . . . . . . . . . . . . . . . 16 (𝑖 ∈ (𝑀..^𝑁) → 𝑀 < (𝑖 + 1))
107101, 102, 106ltled 10373 . . . . . . . . . . . . . . 15 (𝑖 ∈ (𝑀..^𝑁) → 𝑀 ≤ (𝑖 + 1))
108 leid 10321 . . . . . . . . . . . . . . . 16 ((𝑖 + 1) ∈ ℝ → (𝑖 + 1) ≤ (𝑖 + 1))
109102, 108syl 17 . . . . . . . . . . . . . . 15 (𝑖 ∈ (𝑀..^𝑁) → (𝑖 + 1) ≤ (𝑖 + 1))
110100, 107, 109jca32 559 . . . . . . . . . . . . . 14 (𝑖 ∈ (𝑀..^𝑁) → ((𝑀 ∈ ℤ ∧ (𝑖 + 1) ∈ ℤ ∧ (𝑖 + 1) ∈ ℤ) ∧ (𝑀 ≤ (𝑖 + 1) ∧ (𝑖 + 1) ≤ (𝑖 + 1))))
111 elfz2 12522 . . . . . . . . . . . . . 14 ((𝑖 + 1) ∈ (𝑀...(𝑖 + 1)) ↔ ((𝑀 ∈ ℤ ∧ (𝑖 + 1) ∈ ℤ ∧ (𝑖 + 1) ∈ ℤ) ∧ (𝑀 ≤ (𝑖 + 1) ∧ (𝑖 + 1) ≤ (𝑖 + 1))))
112110, 111sylibr 224 . . . . . . . . . . . . 13 (𝑖 ∈ (𝑀..^𝑁) → (𝑖 + 1) ∈ (𝑀...(𝑖 + 1)))
113112adantl 473 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (𝑀..^𝑁)) → (𝑖 + 1) ∈ (𝑀...(𝑖 + 1)))
114 fveq2 6348 . . . . . . . . . . . . 13 (𝑗 = (𝑖 + 1) → (𝐸𝑗) = (𝐸‘(𝑖 + 1)))
115114ssiun2s 4712 . . . . . . . . . . . 12 ((𝑖 + 1) ∈ (𝑀...(𝑖 + 1)) → (𝐸‘(𝑖 + 1)) ⊆ 𝑗 ∈ (𝑀...(𝑖 + 1))(𝐸𝑗))
116113, 115syl 17 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (𝑀..^𝑁)) → (𝐸‘(𝑖 + 1)) ⊆ 𝑗 ∈ (𝑀...(𝑖 + 1))(𝐸𝑗))
117 fveq2 6348 . . . . . . . . . . . . . . . . 17 (𝑖 = 𝑗 → (𝐸𝑖) = (𝐸𝑗))
118117cbviunv 4707 . . . . . . . . . . . . . . . 16 𝑖 ∈ (𝑀...𝑛)(𝐸𝑖) = 𝑗 ∈ (𝑀...𝑛)(𝐸𝑗)
119118mpteq2i 4889 . . . . . . . . . . . . . . 15 (𝑛𝑍 𝑖 ∈ (𝑀...𝑛)(𝐸𝑖)) = (𝑛𝑍 𝑗 ∈ (𝑀...𝑛)(𝐸𝑗))
12073, 119eqtri 2778 . . . . . . . . . . . . . 14 𝐺 = (𝑛𝑍 𝑗 ∈ (𝑀...𝑛)(𝐸𝑗))
121120a1i 11 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (𝑀..^𝑁)) → 𝐺 = (𝑛𝑍 𝑗 ∈ (𝑀...𝑛)(𝐸𝑗)))
122 oveq2 6817 . . . . . . . . . . . . . . 15 (𝑛 = (𝑖 + 1) → (𝑀...𝑛) = (𝑀...(𝑖 + 1)))
123122iuneq1d 4693 . . . . . . . . . . . . . 14 (𝑛 = (𝑖 + 1) → 𝑗 ∈ (𝑀...𝑛)(𝐸𝑗) = 𝑗 ∈ (𝑀...(𝑖 + 1))(𝐸𝑗))
124123adantl 473 . . . . . . . . . . . . 13 (((𝜑𝑖 ∈ (𝑀..^𝑁)) ∧ 𝑛 = (𝑖 + 1)) → 𝑗 ∈ (𝑀...𝑛)(𝐸𝑗) = 𝑗 ∈ (𝑀...(𝑖 + 1))(𝐸𝑗))
12534adantr 472 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (𝑀..^𝑁)) → 𝑀 ∈ ℤ)
12698adantl 473 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 ∈ (𝑀..^𝑁)) → 𝑖 ∈ ℤ)
127126peano2zd 11673 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (𝑀..^𝑁)) → (𝑖 + 1) ∈ ℤ)
128125zred 11670 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 ∈ (𝑀..^𝑁)) → 𝑀 ∈ ℝ)
129127zred 11670 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 ∈ (𝑀..^𝑁)) → (𝑖 + 1) ∈ ℝ)
130126zred 11670 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑖 ∈ (𝑀..^𝑁)) → 𝑖 ∈ ℝ)
131104adantl 473 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑖 ∈ (𝑀..^𝑁)) → 𝑀𝑖)
132130ltp1d 11142 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑖 ∈ (𝑀..^𝑁)) → 𝑖 < (𝑖 + 1))
133128, 130, 129, 131, 132lelttrd 10383 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 ∈ (𝑀..^𝑁)) → 𝑀 < (𝑖 + 1))
134128, 129, 133ltled 10373 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (𝑀..^𝑁)) → 𝑀 ≤ (𝑖 + 1))
135125, 127, 1343jca 1123 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (𝑀..^𝑁)) → (𝑀 ∈ ℤ ∧ (𝑖 + 1) ∈ ℤ ∧ 𝑀 ≤ (𝑖 + 1)))
136 eluz2 11881 . . . . . . . . . . . . . . 15 ((𝑖 + 1) ∈ (ℤ𝑀) ↔ (𝑀 ∈ ℤ ∧ (𝑖 + 1) ∈ ℤ ∧ 𝑀 ≤ (𝑖 + 1)))
137135, 136sylibr 224 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (𝑀..^𝑁)) → (𝑖 + 1) ∈ (ℤ𝑀))
13851eqcomi 2765 . . . . . . . . . . . . . 14 (ℤ𝑀) = 𝑍
139137, 138syl6eleq 2845 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (𝑀..^𝑁)) → (𝑖 + 1) ∈ 𝑍)
140 ovex 6837 . . . . . . . . . . . . . . 15 (𝑀...(𝑖 + 1)) ∈ V
141 fvex 6358 . . . . . . . . . . . . . . 15 (𝐸𝑗) ∈ V
142140, 141iunex 7308 . . . . . . . . . . . . . 14 𝑗 ∈ (𝑀...(𝑖 + 1))(𝐸𝑗) ∈ V
143142a1i 11 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (𝑀..^𝑁)) → 𝑗 ∈ (𝑀...(𝑖 + 1))(𝐸𝑗) ∈ V)
144121, 124, 139, 143fvmptd 6446 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (𝑀..^𝑁)) → (𝐺‘(𝑖 + 1)) = 𝑗 ∈ (𝑀...(𝑖 + 1))(𝐸𝑗))
145144eqcomd 2762 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (𝑀..^𝑁)) → 𝑗 ∈ (𝑀...(𝑖 + 1))(𝐸𝑗) = (𝐺‘(𝑖 + 1)))
146116, 145sseqtrd 3778 . . . . . . . . . 10 ((𝜑𝑖 ∈ (𝑀..^𝑁)) → (𝐸‘(𝑖 + 1)) ⊆ (𝐺‘(𝑖 + 1)))
147 sseqin2 3956 . . . . . . . . . . 11 ((𝐸‘(𝑖 + 1)) ⊆ (𝐺‘(𝑖 + 1)) ↔ ((𝐺‘(𝑖 + 1)) ∩ (𝐸‘(𝑖 + 1))) = (𝐸‘(𝑖 + 1)))
148147biimpi 206 . . . . . . . . . 10 ((𝐸‘(𝑖 + 1)) ⊆ (𝐺‘(𝑖 + 1)) → ((𝐺‘(𝑖 + 1)) ∩ (𝐸‘(𝑖 + 1))) = (𝐸‘(𝑖 + 1)))
149146, 148syl 17 . . . . . . . . 9 ((𝜑𝑖 ∈ (𝑀..^𝑁)) → ((𝐺‘(𝑖 + 1)) ∩ (𝐸‘(𝑖 + 1))) = (𝐸‘(𝑖 + 1)))
150149fveq2d 6352 . . . . . . . 8 ((𝜑𝑖 ∈ (𝑀..^𝑁)) → (𝑂‘((𝐺‘(𝑖 + 1)) ∩ (𝐸‘(𝑖 + 1)))) = (𝑂‘(𝐸‘(𝑖 + 1))))
151 nfcv 2898 . . . . . . . . . . . . 13 𝑗(𝐸‘(𝑖 + 1))
152 elfzouz 12664 . . . . . . . . . . . . . 14 (𝑖 ∈ (𝑀..^𝑁) → 𝑖 ∈ (ℤ𝑀))
153152adantl 473 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (𝑀..^𝑁)) → 𝑖 ∈ (ℤ𝑀))
154151, 153, 114iunp1 39730 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (𝑀..^𝑁)) → 𝑗 ∈ (𝑀...(𝑖 + 1))(𝐸𝑗) = ( 𝑗 ∈ (𝑀...𝑖)(𝐸𝑗) ∪ (𝐸‘(𝑖 + 1))))
155144, 154eqtrd 2790 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (𝑀..^𝑁)) → (𝐺‘(𝑖 + 1)) = ( 𝑗 ∈ (𝑀...𝑖)(𝐸𝑗) ∪ (𝐸‘(𝑖 + 1))))
156155difeq1d 3866 . . . . . . . . . 10 ((𝜑𝑖 ∈ (𝑀..^𝑁)) → ((𝐺‘(𝑖 + 1)) ∖ (𝐸‘(𝑖 + 1))) = (( 𝑗 ∈ (𝑀...𝑖)(𝐸𝑗) ∪ (𝐸‘(𝑖 + 1))) ∖ (𝐸‘(𝑖 + 1))))
157 caratheodorylem1.dj . . . . . . . . . . . . . . 15 (𝜑Disj 𝑛𝑍 (𝐸𝑛))
158 fveq2 6348 . . . . . . . . . . . . . . . 16 (𝑛 = 𝑗 → (𝐸𝑛) = (𝐸𝑗))
159158cbvdisjv 4779 . . . . . . . . . . . . . . 15 (Disj 𝑛𝑍 (𝐸𝑛) ↔ Disj 𝑗𝑍 (𝐸𝑗))
160157, 159sylib 208 . . . . . . . . . . . . . 14 (𝜑Disj 𝑗𝑍 (𝐸𝑗))
161160adantr 472 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (𝑀..^𝑁)) → Disj 𝑗𝑍 (𝐸𝑗))
162 fzssuz 12571 . . . . . . . . . . . . . . 15 (𝑀...𝑖) ⊆ (ℤ𝑀)
163162, 138sseqtri 3774 . . . . . . . . . . . . . 14 (𝑀...𝑖) ⊆ 𝑍
164163a1i 11 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (𝑀..^𝑁)) → (𝑀...𝑖) ⊆ 𝑍)
165 fzp1nel 12613 . . . . . . . . . . . . . . . 16 ¬ (𝑖 + 1) ∈ (𝑀...𝑖)
166165a1i 11 . . . . . . . . . . . . . . 15 (𝑖 ∈ (𝑀..^𝑁) → ¬ (𝑖 + 1) ∈ (𝑀...𝑖))
167166adantl 473 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (𝑀..^𝑁)) → ¬ (𝑖 + 1) ∈ (𝑀...𝑖))
168139, 167eldifd 3722 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (𝑀..^𝑁)) → (𝑖 + 1) ∈ (𝑍 ∖ (𝑀...𝑖)))
169161, 164, 168, 114disjiun2 39721 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (𝑀..^𝑁)) → ( 𝑗 ∈ (𝑀...𝑖)(𝐸𝑗) ∩ (𝐸‘(𝑖 + 1))) = ∅)
170 undif4 4175 . . . . . . . . . . . 12 (( 𝑗 ∈ (𝑀...𝑖)(𝐸𝑗) ∩ (𝐸‘(𝑖 + 1))) = ∅ → ( 𝑗 ∈ (𝑀...𝑖)(𝐸𝑗) ∪ ((𝐸‘(𝑖 + 1)) ∖ (𝐸‘(𝑖 + 1)))) = (( 𝑗 ∈ (𝑀...𝑖)(𝐸𝑗) ∪ (𝐸‘(𝑖 + 1))) ∖ (𝐸‘(𝑖 + 1))))
171169, 170syl 17 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (𝑀..^𝑁)) → ( 𝑗 ∈ (𝑀...𝑖)(𝐸𝑗) ∪ ((𝐸‘(𝑖 + 1)) ∖ (𝐸‘(𝑖 + 1)))) = (( 𝑗 ∈ (𝑀...𝑖)(𝐸𝑗) ∪ (𝐸‘(𝑖 + 1))) ∖ (𝐸‘(𝑖 + 1))))
172171eqcomd 2762 . . . . . . . . . 10 ((𝜑𝑖 ∈ (𝑀..^𝑁)) → (( 𝑗 ∈ (𝑀...𝑖)(𝐸𝑗) ∪ (𝐸‘(𝑖 + 1))) ∖ (𝐸‘(𝑖 + 1))) = ( 𝑗 ∈ (𝑀...𝑖)(𝐸𝑗) ∪ ((𝐸‘(𝑖 + 1)) ∖ (𝐸‘(𝑖 + 1)))))
173 simpl 474 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (𝑀..^𝑁)) → 𝜑)
174153, 138syl6eleq 2845 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (𝑀..^𝑁)) → 𝑖𝑍)
175120a1i 11 . . . . . . . . . . . . . . 15 ((𝜑𝑖𝑍) → 𝐺 = (𝑛𝑍 𝑗 ∈ (𝑀...𝑛)(𝐸𝑗)))
176 simpr 479 . . . . . . . . . . . . . . . . 17 (((𝜑𝑖𝑍) ∧ 𝑛 = 𝑖) → 𝑛 = 𝑖)
177176oveq2d 6825 . . . . . . . . . . . . . . . 16 (((𝜑𝑖𝑍) ∧ 𝑛 = 𝑖) → (𝑀...𝑛) = (𝑀...𝑖))
178177iuneq1d 4693 . . . . . . . . . . . . . . 15 (((𝜑𝑖𝑍) ∧ 𝑛 = 𝑖) → 𝑗 ∈ (𝑀...𝑛)(𝐸𝑗) = 𝑗 ∈ (𝑀...𝑖)(𝐸𝑗))
179 simpr 479 . . . . . . . . . . . . . . 15 ((𝜑𝑖𝑍) → 𝑖𝑍)
180 ovex 6837 . . . . . . . . . . . . . . . . 17 (𝑀...𝑖) ∈ V
181180, 141iunex 7308 . . . . . . . . . . . . . . . 16 𝑗 ∈ (𝑀...𝑖)(𝐸𝑗) ∈ V
182181a1i 11 . . . . . . . . . . . . . . 15 ((𝜑𝑖𝑍) → 𝑗 ∈ (𝑀...𝑖)(𝐸𝑗) ∈ V)
183175, 178, 179, 182fvmptd 6446 . . . . . . . . . . . . . 14 ((𝜑𝑖𝑍) → (𝐺𝑖) = 𝑗 ∈ (𝑀...𝑖)(𝐸𝑗))
184173, 174, 183syl2anc 696 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (𝑀..^𝑁)) → (𝐺𝑖) = 𝑗 ∈ (𝑀...𝑖)(𝐸𝑗))
185184eqcomd 2762 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (𝑀..^𝑁)) → 𝑗 ∈ (𝑀...𝑖)(𝐸𝑗) = (𝐺𝑖))
186 difid 4087 . . . . . . . . . . . . 13 ((𝐸‘(𝑖 + 1)) ∖ (𝐸‘(𝑖 + 1))) = ∅
187186a1i 11 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (𝑀..^𝑁)) → ((𝐸‘(𝑖 + 1)) ∖ (𝐸‘(𝑖 + 1))) = ∅)
188185, 187uneq12d 3907 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (𝑀..^𝑁)) → ( 𝑗 ∈ (𝑀...𝑖)(𝐸𝑗) ∪ ((𝐸‘(𝑖 + 1)) ∖ (𝐸‘(𝑖 + 1)))) = ((𝐺𝑖) ∪ ∅))
189 un0 4106 . . . . . . . . . . . 12 ((𝐺𝑖) ∪ ∅) = (𝐺𝑖)
190189a1i 11 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (𝑀..^𝑁)) → ((𝐺𝑖) ∪ ∅) = (𝐺𝑖))
191188, 190eqtrd 2790 . . . . . . . . . 10 ((𝜑𝑖 ∈ (𝑀..^𝑁)) → ( 𝑗 ∈ (𝑀...𝑖)(𝐸𝑗) ∪ ((𝐸‘(𝑖 + 1)) ∖ (𝐸‘(𝑖 + 1)))) = (𝐺𝑖))
192156, 172, 1913eqtrd 2794 . . . . . . . . 9 ((𝜑𝑖 ∈ (𝑀..^𝑁)) → ((𝐺‘(𝑖 + 1)) ∖ (𝐸‘(𝑖 + 1))) = (𝐺𝑖))
193192fveq2d 6352 . . . . . . . 8 ((𝜑𝑖 ∈ (𝑀..^𝑁)) → (𝑂‘((𝐺‘(𝑖 + 1)) ∖ (𝐸‘(𝑖 + 1)))) = (𝑂‘(𝐺𝑖)))
194150, 193oveq12d 6827 . . . . . . 7 ((𝜑𝑖 ∈ (𝑀..^𝑁)) → ((𝑂‘((𝐺‘(𝑖 + 1)) ∩ (𝐸‘(𝑖 + 1)))) +𝑒 (𝑂‘((𝐺‘(𝑖 + 1)) ∖ (𝐸‘(𝑖 + 1))))) = ((𝑂‘(𝐸‘(𝑖 + 1))) +𝑒 (𝑂‘(𝐺𝑖))))
1951943adant3 1127 . . . . . 6 ((𝜑𝑖 ∈ (𝑀..^𝑁) ∧ (𝑂‘(𝐺𝑖)) = (Σ^‘(𝑛 ∈ (𝑀...𝑖) ↦ (𝑂‘(𝐸𝑛))))) → ((𝑂‘((𝐺‘(𝑖 + 1)) ∩ (𝐸‘(𝑖 + 1)))) +𝑒 (𝑂‘((𝐺‘(𝑖 + 1)) ∖ (𝐸‘(𝑖 + 1))))) = ((𝑂‘(𝐸‘(𝑖 + 1))) +𝑒 (𝑂‘(𝐺𝑖))))
19639adantr 472 . . . . . . . . 9 ((𝜑𝑖 ∈ (𝑀..^𝑁)) → 𝑂 ∈ OutMeas)
19745adantr 472 . . . . . . . . . 10 ((𝜑𝑖 ∈ (𝑀..^𝑁)) → 𝐸:𝑍𝑆)
198197, 139ffvelrnd 6519 . . . . . . . . 9 ((𝜑𝑖 ∈ (𝑀..^𝑁)) → (𝐸‘(𝑖 + 1)) ∈ 𝑆)
199 simpll 807 . . . . . . . . . . . . 13 (((𝜑𝑖 ∈ (𝑀..^𝑁)) ∧ 𝑗 ∈ (𝑀...(𝑖 + 1))) → 𝜑)
20097adantr 472 . . . . . . . . . . . . . . . . 17 ((𝑖 ∈ (𝑀..^𝑁) ∧ 𝑗 ∈ (𝑀...(𝑖 + 1))) → 𝑀 ∈ ℤ)
201 elfzelz 12531 . . . . . . . . . . . . . . . . . 18 (𝑗 ∈ (𝑀...(𝑖 + 1)) → 𝑗 ∈ ℤ)
202201adantl 473 . . . . . . . . . . . . . . . . 17 ((𝑖 ∈ (𝑀..^𝑁) ∧ 𝑗 ∈ (𝑀...(𝑖 + 1))) → 𝑗 ∈ ℤ)
203 elfzle1 12533 . . . . . . . . . . . . . . . . . 18 (𝑗 ∈ (𝑀...(𝑖 + 1)) → 𝑀𝑗)
204203adantl 473 . . . . . . . . . . . . . . . . 17 ((𝑖 ∈ (𝑀..^𝑁) ∧ 𝑗 ∈ (𝑀...(𝑖 + 1))) → 𝑀𝑗)
205200, 202, 2043jca 1123 . . . . . . . . . . . . . . . 16 ((𝑖 ∈ (𝑀..^𝑁) ∧ 𝑗 ∈ (𝑀...(𝑖 + 1))) → (𝑀 ∈ ℤ ∧ 𝑗 ∈ ℤ ∧ 𝑀𝑗))
206 eluz2 11881 . . . . . . . . . . . . . . . 16 (𝑗 ∈ (ℤ𝑀) ↔ (𝑀 ∈ ℤ ∧ 𝑗 ∈ ℤ ∧ 𝑀𝑗))
207205, 206sylibr 224 . . . . . . . . . . . . . . 15 ((𝑖 ∈ (𝑀..^𝑁) ∧ 𝑗 ∈ (𝑀...(𝑖 + 1))) → 𝑗 ∈ (ℤ𝑀))
208207, 138syl6eleq 2845 . . . . . . . . . . . . . 14 ((𝑖 ∈ (𝑀..^𝑁) ∧ 𝑗 ∈ (𝑀...(𝑖 + 1))) → 𝑗𝑍)
209208adantll 752 . . . . . . . . . . . . 13 (((𝜑𝑖 ∈ (𝑀..^𝑁)) ∧ 𝑗 ∈ (𝑀...(𝑖 + 1))) → 𝑗𝑍)
21039, 43syl 17 . . . . . . . . . . . . . . . 16 (𝜑𝑆 ⊆ dom 𝑂)
211210adantr 472 . . . . . . . . . . . . . . 15 ((𝜑𝑗𝑍) → 𝑆 ⊆ dom 𝑂)
21245ffvelrnda 6518 . . . . . . . . . . . . . . 15 ((𝜑𝑗𝑍) → (𝐸𝑗) ∈ 𝑆)
213211, 212sseldd 3741 . . . . . . . . . . . . . 14 ((𝜑𝑗𝑍) → (𝐸𝑗) ∈ dom 𝑂)
214 elssuni 4615 . . . . . . . . . . . . . 14 ((𝐸𝑗) ∈ dom 𝑂 → (𝐸𝑗) ⊆ dom 𝑂)
215213, 214syl 17 . . . . . . . . . . . . 13 ((𝜑𝑗𝑍) → (𝐸𝑗) ⊆ dom 𝑂)
216199, 209, 215syl2anc 696 . . . . . . . . . . . 12 (((𝜑𝑖 ∈ (𝑀..^𝑁)) ∧ 𝑗 ∈ (𝑀...(𝑖 + 1))) → (𝐸𝑗) ⊆ dom 𝑂)
217216ralrimiva 3100 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (𝑀..^𝑁)) → ∀𝑗 ∈ (𝑀...(𝑖 + 1))(𝐸𝑗) ⊆ dom 𝑂)
218 iunss 4709 . . . . . . . . . . 11 ( 𝑗 ∈ (𝑀...(𝑖 + 1))(𝐸𝑗) ⊆ dom 𝑂 ↔ ∀𝑗 ∈ (𝑀...(𝑖 + 1))(𝐸𝑗) ⊆ dom 𝑂)
219217, 218sylibr 224 . . . . . . . . . 10 ((𝜑𝑖 ∈ (𝑀..^𝑁)) → 𝑗 ∈ (𝑀...(𝑖 + 1))(𝐸𝑗) ⊆ dom 𝑂)
220144, 219eqsstrd 3776 . . . . . . . . 9 ((𝜑𝑖 ∈ (𝑀..^𝑁)) → (𝐺‘(𝑖 + 1)) ⊆ dom 𝑂)
221196, 42, 41, 198, 220caragensplit 41216 . . . . . . . 8 ((𝜑𝑖 ∈ (𝑀..^𝑁)) → ((𝑂‘((𝐺‘(𝑖 + 1)) ∩ (𝐸‘(𝑖 + 1)))) +𝑒 (𝑂‘((𝐺‘(𝑖 + 1)) ∖ (𝐸‘(𝑖 + 1))))) = (𝑂‘(𝐺‘(𝑖 + 1))))
222221eqcomd 2762 . . . . . . 7 ((𝜑𝑖 ∈ (𝑀..^𝑁)) → (𝑂‘(𝐺‘(𝑖 + 1))) = ((𝑂‘((𝐺‘(𝑖 + 1)) ∩ (𝐸‘(𝑖 + 1)))) +𝑒 (𝑂‘((𝐺‘(𝑖 + 1)) ∖ (𝐸‘(𝑖 + 1))))))
2232223adant3 1127 . . . . . 6 ((𝜑𝑖 ∈ (𝑀..^𝑁) ∧ (𝑂‘(𝐺𝑖)) = (Σ^‘(𝑛 ∈ (𝑀...𝑖) ↦ (𝑂‘(𝐸𝑛))))) → (𝑂‘(𝐺‘(𝑖 + 1))) = ((𝑂‘((𝐺‘(𝑖 + 1)) ∩ (𝐸‘(𝑖 + 1)))) +𝑒 (𝑂‘((𝐺‘(𝑖 + 1)) ∖ (𝐸‘(𝑖 + 1))))))
224196adantr 472 . . . . . . . . . 10 (((𝜑𝑖 ∈ (𝑀..^𝑁)) ∧ 𝑛 ∈ (𝑀...(𝑖 + 1))) → 𝑂 ∈ OutMeas)
225173adantr 472 . . . . . . . . . . 11 (((𝜑𝑖 ∈ (𝑀..^𝑁)) ∧ 𝑛 ∈ (𝑀...(𝑖 + 1))) → 𝜑)
226 elfzuz 12527 . . . . . . . . . . . . 13 (𝑛 ∈ (𝑀...(𝑖 + 1)) → 𝑛 ∈ (ℤ𝑀))
227226, 138syl6eleq 2845 . . . . . . . . . . . 12 (𝑛 ∈ (𝑀...(𝑖 + 1)) → 𝑛𝑍)
228227adantl 473 . . . . . . . . . . 11 (((𝜑𝑖 ∈ (𝑀..^𝑁)) ∧ 𝑛 ∈ (𝑀...(𝑖 + 1))) → 𝑛𝑍)
22945, 210fssd 6214 . . . . . . . . . . . . 13 (𝜑𝐸:𝑍⟶dom 𝑂)
230229ffvelrnda 6518 . . . . . . . . . . . 12 ((𝜑𝑛𝑍) → (𝐸𝑛) ∈ dom 𝑂)
231230, 57syl 17 . . . . . . . . . . 11 ((𝜑𝑛𝑍) → (𝐸𝑛) ⊆ dom 𝑂)
232225, 228, 231syl2anc 696 . . . . . . . . . 10 (((𝜑𝑖 ∈ (𝑀..^𝑁)) ∧ 𝑛 ∈ (𝑀...(𝑖 + 1))) → (𝐸𝑛) ⊆ dom 𝑂)
233224, 41, 232omecl 41219 . . . . . . . . 9 (((𝜑𝑖 ∈ (𝑀..^𝑁)) ∧ 𝑛 ∈ (𝑀...(𝑖 + 1))) → (𝑂‘(𝐸𝑛)) ∈ (0[,]+∞))
234 fveq2 6348 . . . . . . . . . 10 (𝑛 = (𝑖 + 1) → (𝐸𝑛) = (𝐸‘(𝑖 + 1)))
235234fveq2d 6352 . . . . . . . . 9 (𝑛 = (𝑖 + 1) → (𝑂‘(𝐸𝑛)) = (𝑂‘(𝐸‘(𝑖 + 1))))
236153, 233, 235sge0p1 41130 . . . . . . . 8 ((𝜑𝑖 ∈ (𝑀..^𝑁)) → (Σ^‘(𝑛 ∈ (𝑀...(𝑖 + 1)) ↦ (𝑂‘(𝐸𝑛)))) = ((Σ^‘(𝑛 ∈ (𝑀...𝑖) ↦ (𝑂‘(𝐸𝑛)))) +𝑒 (𝑂‘(𝐸‘(𝑖 + 1)))))
2372363adant3 1127 . . . . . . 7 ((𝜑𝑖 ∈ (𝑀..^𝑁) ∧ (𝑂‘(𝐺𝑖)) = (Σ^‘(𝑛 ∈ (𝑀...𝑖) ↦ (𝑂‘(𝐸𝑛))))) → (Σ^‘(𝑛 ∈ (𝑀...(𝑖 + 1)) ↦ (𝑂‘(𝐸𝑛)))) = ((Σ^‘(𝑛 ∈ (𝑀...𝑖) ↦ (𝑂‘(𝐸𝑛)))) +𝑒 (𝑂‘(𝐸‘(𝑖 + 1)))))
238 id 22 . . . . . . . . . 10 ((𝑂‘(𝐺𝑖)) = (Σ^‘(𝑛 ∈ (𝑀...𝑖) ↦ (𝑂‘(𝐸𝑛)))) → (𝑂‘(𝐺𝑖)) = (Σ^‘(𝑛 ∈ (𝑀...𝑖) ↦ (𝑂‘(𝐸𝑛)))))
239238eqcomd 2762 . . . . . . . . 9 ((𝑂‘(𝐺𝑖)) = (Σ^‘(𝑛 ∈ (𝑀...𝑖) ↦ (𝑂‘(𝐸𝑛)))) → (Σ^‘(𝑛 ∈ (𝑀...𝑖) ↦ (𝑂‘(𝐸𝑛)))) = (𝑂‘(𝐺𝑖)))
240239oveq1d 6824 . . . . . . . 8 ((𝑂‘(𝐺𝑖)) = (Σ^‘(𝑛 ∈ (𝑀...𝑖) ↦ (𝑂‘(𝐸𝑛)))) → ((Σ^‘(𝑛 ∈ (𝑀...𝑖) ↦ (𝑂‘(𝐸𝑛)))) +𝑒 (𝑂‘(𝐸‘(𝑖 + 1)))) = ((𝑂‘(𝐺𝑖)) +𝑒 (𝑂‘(𝐸‘(𝑖 + 1)))))
2412403ad2ant3 1130 . . . . . . 7 ((𝜑𝑖 ∈ (𝑀..^𝑁) ∧ (𝑂‘(𝐺𝑖)) = (Σ^‘(𝑛 ∈ (𝑀...𝑖) ↦ (𝑂‘(𝐸𝑛))))) → ((Σ^‘(𝑛 ∈ (𝑀...𝑖) ↦ (𝑂‘(𝐸𝑛)))) +𝑒 (𝑂‘(𝐸‘(𝑖 + 1)))) = ((𝑂‘(𝐺𝑖)) +𝑒 (𝑂‘(𝐸‘(𝑖 + 1)))))
242 simpl 474 . . . . . . . . . . . . . . . 16 ((𝜑𝑗 ∈ (𝑀...𝑖)) → 𝜑)
243163sseli 3736 . . . . . . . . . . . . . . . . 17 (𝑗 ∈ (𝑀...𝑖) → 𝑗𝑍)
244243adantl 473 . . . . . . . . . . . . . . . 16 ((𝜑𝑗 ∈ (𝑀...𝑖)) → 𝑗𝑍)
245242, 244, 215syl2anc 696 . . . . . . . . . . . . . . 15 ((𝜑𝑗 ∈ (𝑀...𝑖)) → (𝐸𝑗) ⊆ dom 𝑂)
246245adantlr 753 . . . . . . . . . . . . . 14 (((𝜑𝑖𝑍) ∧ 𝑗 ∈ (𝑀...𝑖)) → (𝐸𝑗) ⊆ dom 𝑂)
247246ralrimiva 3100 . . . . . . . . . . . . 13 ((𝜑𝑖𝑍) → ∀𝑗 ∈ (𝑀...𝑖)(𝐸𝑗) ⊆ dom 𝑂)
248 iunss 4709 . . . . . . . . . . . . 13 ( 𝑗 ∈ (𝑀...𝑖)(𝐸𝑗) ⊆ dom 𝑂 ↔ ∀𝑗 ∈ (𝑀...𝑖)(𝐸𝑗) ⊆ dom 𝑂)
249247, 248sylibr 224 . . . . . . . . . . . 12 ((𝜑𝑖𝑍) → 𝑗 ∈ (𝑀...𝑖)(𝐸𝑗) ⊆ dom 𝑂)
250183, 249eqsstrd 3776 . . . . . . . . . . 11 ((𝜑𝑖𝑍) → (𝐺𝑖) ⊆ dom 𝑂)
251173, 174, 250syl2anc 696 . . . . . . . . . 10 ((𝜑𝑖 ∈ (𝑀..^𝑁)) → (𝐺𝑖) ⊆ dom 𝑂)
252196, 41, 251omexrcl 41223 . . . . . . . . 9 ((𝜑𝑖 ∈ (𝑀..^𝑁)) → (𝑂‘(𝐺𝑖)) ∈ ℝ*)
253116, 219sstrd 3750 . . . . . . . . . 10 ((𝜑𝑖 ∈ (𝑀..^𝑁)) → (𝐸‘(𝑖 + 1)) ⊆ dom 𝑂)
254196, 41, 253omexrcl 41223 . . . . . . . . 9 ((𝜑𝑖 ∈ (𝑀..^𝑁)) → (𝑂‘(𝐸‘(𝑖 + 1))) ∈ ℝ*)
255252, 254xaddcomd 40034 . . . . . . . 8 ((𝜑𝑖 ∈ (𝑀..^𝑁)) → ((𝑂‘(𝐺𝑖)) +𝑒 (𝑂‘(𝐸‘(𝑖 + 1)))) = ((𝑂‘(𝐸‘(𝑖 + 1))) +𝑒 (𝑂‘(𝐺𝑖))))
2562553adant3 1127 . . . . . . 7 ((𝜑𝑖 ∈ (𝑀..^𝑁) ∧ (𝑂‘(𝐺𝑖)) = (Σ^‘(𝑛 ∈ (𝑀...𝑖) ↦ (𝑂‘(𝐸𝑛))))) → ((𝑂‘(𝐺𝑖)) +𝑒 (𝑂‘(𝐸‘(𝑖 + 1)))) = ((𝑂‘(𝐸‘(𝑖 + 1))) +𝑒 (𝑂‘(𝐺𝑖))))
257237, 241, 2563eqtrd 2794 . . . . . 6 ((𝜑𝑖 ∈ (𝑀..^𝑁) ∧ (𝑂‘(𝐺𝑖)) = (Σ^‘(𝑛 ∈ (𝑀...𝑖) ↦ (𝑂‘(𝐸𝑛))))) → (Σ^‘(𝑛 ∈ (𝑀...(𝑖 + 1)) ↦ (𝑂‘(𝐸𝑛)))) = ((𝑂‘(𝐸‘(𝑖 + 1))) +𝑒 (𝑂‘(𝐺𝑖))))
258195, 223, 2573eqtr4d 2800 . . . . 5 ((𝜑𝑖 ∈ (𝑀..^𝑁) ∧ (𝑂‘(𝐺𝑖)) = (Σ^‘(𝑛 ∈ (𝑀...𝑖) ↦ (𝑂‘(𝐸𝑛))))) → (𝑂‘(𝐺‘(𝑖 + 1))) = (Σ^‘(𝑛 ∈ (𝑀...(𝑖 + 1)) ↦ (𝑂‘(𝐸𝑛)))))
25992, 93, 96, 258syl3anc 1477 . . . 4 ((𝑖 ∈ (𝑀..^𝑁) ∧ (𝜑 → (𝑂‘(𝐺𝑖)) = (Σ^‘(𝑛 ∈ (𝑀...𝑖) ↦ (𝑂‘(𝐸𝑛))))) ∧ 𝜑) → (𝑂‘(𝐺‘(𝑖 + 1))) = (Σ^‘(𝑛 ∈ (𝑀...(𝑖 + 1)) ↦ (𝑂‘(𝐸𝑛)))))
2602593exp 1113 . . 3 (𝑖 ∈ (𝑀..^𝑁) → ((𝜑 → (𝑂‘(𝐺𝑖)) = (Σ^‘(𝑛 ∈ (𝑀...𝑖) ↦ (𝑂‘(𝐸𝑛))))) → (𝜑 → (𝑂‘(𝐺‘(𝑖 + 1))) = (Σ^‘(𝑛 ∈ (𝑀...(𝑖 + 1)) ↦ (𝑂‘(𝐸𝑛)))))))
26111, 18, 25, 32, 91, 260fzind2 12776 . 2 (𝑁 ∈ (𝑀...𝑁) → (𝜑 → (𝑂‘(𝐺𝑁)) = (Σ^‘(𝑛 ∈ (𝑀...𝑁) ↦ (𝑂‘(𝐸𝑛))))))
2623, 4, 261sylc 65 1 (𝜑 → (𝑂‘(𝐺𝑁)) = (Σ^‘(𝑛 ∈ (𝑀...𝑁) ↦ (𝑂‘(𝐸𝑛)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 383  w3a 1072   = wceq 1628  wcel 2135  wral 3046  Vcvv 3336  cdif 3708  cun 3709  cin 3710  wss 3711  c0 4054  {csn 4317   cuni 4584   ciun 4668  Disj wdisj 4768   class class class wbr 4800  cmpt 4877  dom cdm 5262  wf 6041  cfv 6045  (class class class)co 6809  cr 10123  0cc0 10124  1c1 10125   + caddc 10127  +∞cpnf 10259  cle 10263  cz 11565  cuz 11875   +𝑒 cxad 12133  [,]cicc 12367  ...cfz 12515  ..^cfzo 12655  Σ^csumge0 41078  OutMeascome 41205  CaraGenccaragen 41207
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1867  ax-4 1882  ax-5 1984  ax-6 2050  ax-7 2086  ax-8 2137  ax-9 2144  ax-10 2164  ax-11 2179  ax-12 2192  ax-13 2387  ax-ext 2736  ax-rep 4919  ax-sep 4929  ax-nul 4937  ax-pow 4988  ax-pr 5051  ax-un 7110  ax-inf2 8707  ax-cnex 10180  ax-resscn 10181  ax-1cn 10182  ax-icn 10183  ax-addcl 10184  ax-addrcl 10185  ax-mulcl 10186  ax-mulrcl 10187  ax-mulcom 10188  ax-addass 10189  ax-mulass 10190  ax-distr 10191  ax-i2m1 10192  ax-1ne0 10193  ax-1rid 10194  ax-rnegex 10195  ax-rrecex 10196  ax-cnre 10197  ax-pre-lttri 10198  ax-pre-lttrn 10199  ax-pre-ltadd 10200  ax-pre-mulgt0 10201  ax-pre-sup 10202
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1631  df-fal 1634  df-ex 1850  df-nf 1855  df-sb 2043  df-eu 2607  df-mo 2608  df-clab 2743  df-cleq 2749  df-clel 2752  df-nfc 2887  df-ne 2929  df-nel 3032  df-ral 3051  df-rex 3052  df-reu 3053  df-rmo 3054  df-rab 3055  df-v 3338  df-sbc 3573  df-csb 3671  df-dif 3714  df-un 3716  df-in 3718  df-ss 3725  df-pss 3727  df-nul 4055  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-tp 4322  df-op 4324  df-uni 4585  df-int 4624  df-iun 4670  df-disj 4769  df-br 4801  df-opab 4861  df-mpt 4878  df-tr 4901  df-id 5170  df-eprel 5175  df-po 5183  df-so 5184  df-fr 5221  df-se 5222  df-we 5223  df-xp 5268  df-rel 5269  df-cnv 5270  df-co 5271  df-dm 5272  df-rn 5273  df-res 5274  df-ima 5275  df-pred 5837  df-ord 5883  df-on 5884  df-lim 5885  df-suc 5886  df-iota 6008  df-fun 6047  df-fn 6048  df-f 6049  df-f1 6050  df-fo 6051  df-f1o 6052  df-fv 6053  df-isom 6054  df-riota 6770  df-ov 6812  df-oprab 6813  df-mpt2 6814  df-om 7227  df-1st 7329  df-2nd 7330  df-wrecs 7572  df-recs 7633  df-rdg 7671  df-1o 7725  df-oadd 7729  df-er 7907  df-en 8118  df-dom 8119  df-sdom 8120  df-fin 8121  df-sup 8509  df-oi 8576  df-card 8951  df-pnf 10264  df-mnf 10265  df-xr 10266  df-ltxr 10267  df-le 10268  df-sub 10456  df-neg 10457  df-div 10873  df-nn 11209  df-2 11267  df-3 11268  df-n0 11481  df-z 11566  df-uz 11876  df-rp 12022  df-xadd 12136  df-ico 12370  df-icc 12371  df-fz 12516  df-fzo 12656  df-seq 12992  df-exp 13051  df-hash 13308  df-cj 14034  df-re 14035  df-im 14036  df-sqrt 14170  df-abs 14171  df-clim 14414  df-sum 14612  df-sumge0 41079  df-ome 41206  df-caragen 41208
This theorem is referenced by:  caratheodorylem2  41243
  Copyright terms: Public domain W3C validator