Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  caragenunidm Structured version   Visualization version   GIF version

Theorem caragenunidm 41239
Description: The base set of an outer measure belongs to the sigma-algebra generated by the Caratheodory's construction. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
caragenunidm.o (𝜑𝑂 ∈ OutMeas)
caragenunidm.x 𝑋 = dom 𝑂
caragenunidm.s 𝑆 = (CaraGen‘𝑂)
Assertion
Ref Expression
caragenunidm (𝜑𝑋𝑆)

Proof of Theorem caragenunidm
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 caragenunidm.o . 2 (𝜑𝑂 ∈ OutMeas)
2 caragenunidm.x . 2 𝑋 = dom 𝑂
3 caragenunidm.s . 2 𝑆 = (CaraGen‘𝑂)
4 dmexg 7248 . . . . 5 (𝑂 ∈ OutMeas → dom 𝑂 ∈ V)
5 uniexg 7106 . . . . 5 (dom 𝑂 ∈ V → dom 𝑂 ∈ V)
61, 4, 53syl 18 . . . 4 (𝜑 dom 𝑂 ∈ V)
72, 6syl5eqel 2854 . . 3 (𝜑𝑋 ∈ V)
8 pwidg 4313 . . 3 (𝑋 ∈ V → 𝑋 ∈ 𝒫 𝑋)
97, 8syl 17 . 2 (𝜑𝑋 ∈ 𝒫 𝑋)
10 elpwi 4308 . . . . . . 7 (𝑎 ∈ 𝒫 𝑋𝑎𝑋)
11 df-ss 3737 . . . . . . . 8 (𝑎𝑋 ↔ (𝑎𝑋) = 𝑎)
1211biimpi 206 . . . . . . 7 (𝑎𝑋 → (𝑎𝑋) = 𝑎)
1310, 12syl 17 . . . . . 6 (𝑎 ∈ 𝒫 𝑋 → (𝑎𝑋) = 𝑎)
1413fveq2d 6337 . . . . 5 (𝑎 ∈ 𝒫 𝑋 → (𝑂‘(𝑎𝑋)) = (𝑂𝑎))
1514adantl 467 . . . 4 ((𝜑𝑎 ∈ 𝒫 𝑋) → (𝑂‘(𝑎𝑋)) = (𝑂𝑎))
16 ssdif0 4090 . . . . . . . 8 (𝑎𝑋 ↔ (𝑎𝑋) = ∅)
1710, 16sylib 208 . . . . . . 7 (𝑎 ∈ 𝒫 𝑋 → (𝑎𝑋) = ∅)
1817fveq2d 6337 . . . . . 6 (𝑎 ∈ 𝒫 𝑋 → (𝑂‘(𝑎𝑋)) = (𝑂‘∅))
1918adantl 467 . . . . 5 ((𝜑𝑎 ∈ 𝒫 𝑋) → (𝑂‘(𝑎𝑋)) = (𝑂‘∅))
201ome0 41228 . . . . . 6 (𝜑 → (𝑂‘∅) = 0)
2120adantr 466 . . . . 5 ((𝜑𝑎 ∈ 𝒫 𝑋) → (𝑂‘∅) = 0)
2219, 21eqtrd 2805 . . . 4 ((𝜑𝑎 ∈ 𝒫 𝑋) → (𝑂‘(𝑎𝑋)) = 0)
2315, 22oveq12d 6814 . . 3 ((𝜑𝑎 ∈ 𝒫 𝑋) → ((𝑂‘(𝑎𝑋)) +𝑒 (𝑂‘(𝑎𝑋))) = ((𝑂𝑎) +𝑒 0))
24 iccssxr 12461 . . . . 5 (0[,]+∞) ⊆ ℝ*
251adantr 466 . . . . . 6 ((𝜑𝑎 ∈ 𝒫 𝑋) → 𝑂 ∈ OutMeas)
2610adantl 467 . . . . . 6 ((𝜑𝑎 ∈ 𝒫 𝑋) → 𝑎𝑋)
2725, 2, 26omecl 41234 . . . . 5 ((𝜑𝑎 ∈ 𝒫 𝑋) → (𝑂𝑎) ∈ (0[,]+∞))
2824, 27sseldi 3750 . . . 4 ((𝜑𝑎 ∈ 𝒫 𝑋) → (𝑂𝑎) ∈ ℝ*)
2928xaddid1d 12279 . . 3 ((𝜑𝑎 ∈ 𝒫 𝑋) → ((𝑂𝑎) +𝑒 0) = (𝑂𝑎))
30 eqidd 2772 . . 3 ((𝜑𝑎 ∈ 𝒫 𝑋) → (𝑂𝑎) = (𝑂𝑎))
3123, 29, 303eqtrd 2809 . 2 ((𝜑𝑎 ∈ 𝒫 𝑋) → ((𝑂‘(𝑎𝑋)) +𝑒 (𝑂‘(𝑎𝑋))) = (𝑂𝑎))
321, 2, 3, 9, 31carageneld 41233 1 (𝜑𝑋𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382   = wceq 1631  wcel 2145  Vcvv 3351  cdif 3720  cin 3722  wss 3723  c0 4063  𝒫 cpw 4298   cuni 4575  dom cdm 5250  cfv 6030  (class class class)co 6796  0cc0 10142  +∞cpnf 10277  *cxr 10279   +𝑒 cxad 12149  [,]cicc 12383  OutMeascome 41220  CaraGenccaragen 41222
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4916  ax-nul 4924  ax-pow 4975  ax-pr 5035  ax-un 7100  ax-cnex 10198  ax-resscn 10199  ax-1cn 10200  ax-icn 10201  ax-addcl 10202  ax-addrcl 10203  ax-mulcl 10204  ax-mulrcl 10205  ax-mulcom 10206  ax-addass 10207  ax-mulass 10208  ax-distr 10209  ax-i2m1 10210  ax-1ne0 10211  ax-1rid 10212  ax-rnegex 10213  ax-rrecex 10214  ax-cnre 10215  ax-pre-lttri 10216  ax-pre-lttrn 10217  ax-pre-ltadd 10218
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-nul 4064  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-op 4324  df-uni 4576  df-iun 4657  df-br 4788  df-opab 4848  df-mpt 4865  df-id 5158  df-po 5171  df-so 5172  df-xp 5256  df-rel 5257  df-cnv 5258  df-co 5259  df-dm 5260  df-rn 5261  df-res 5262  df-ima 5263  df-iota 5993  df-fun 6032  df-fn 6033  df-f 6034  df-f1 6035  df-fo 6036  df-f1o 6037  df-fv 6038  df-ov 6799  df-oprab 6800  df-mpt2 6801  df-1st 7319  df-2nd 7320  df-er 7900  df-en 8114  df-dom 8115  df-sdom 8116  df-pnf 10282  df-mnf 10283  df-xr 10284  df-ltxr 10285  df-xadd 12152  df-icc 12387  df-ome 41221  df-caragen 41223
This theorem is referenced by:  caragenuni  41242  rrnmbl  41345
  Copyright terms: Public domain W3C validator