![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > caragenss | Structured version Visualization version GIF version |
Description: The sigma-algebra generated from an outer measure, by the Caratheodory's construction, is a subset of the domain of the outer measure. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
Ref | Expression |
---|---|
caragenss.1 | ⊢ 𝑆 = (CaraGen‘𝑂) |
Ref | Expression |
---|---|
caragenss | ⊢ (𝑂 ∈ OutMeas → 𝑆 ⊆ dom 𝑂) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssrab2 3828 | . . 3 ⊢ {𝑒 ∈ 𝒫 ∪ dom 𝑂 ∣ ∀𝑎 ∈ 𝒫 ∪ dom 𝑂((𝑂‘(𝑎 ∩ 𝑒)) +𝑒 (𝑂‘(𝑎 ∖ 𝑒))) = (𝑂‘𝑎)} ⊆ 𝒫 ∪ dom 𝑂 | |
2 | 1 | a1i 11 | . 2 ⊢ (𝑂 ∈ OutMeas → {𝑒 ∈ 𝒫 ∪ dom 𝑂 ∣ ∀𝑎 ∈ 𝒫 ∪ dom 𝑂((𝑂‘(𝑎 ∩ 𝑒)) +𝑒 (𝑂‘(𝑎 ∖ 𝑒))) = (𝑂‘𝑎)} ⊆ 𝒫 ∪ dom 𝑂) |
3 | caragenss.1 | . . . . 5 ⊢ 𝑆 = (CaraGen‘𝑂) | |
4 | 3 | a1i 11 | . . . 4 ⊢ (𝑂 ∈ OutMeas → 𝑆 = (CaraGen‘𝑂)) |
5 | caragenval 41231 | . . . 4 ⊢ (𝑂 ∈ OutMeas → (CaraGen‘𝑂) = {𝑒 ∈ 𝒫 ∪ dom 𝑂 ∣ ∀𝑎 ∈ 𝒫 ∪ dom 𝑂((𝑂‘(𝑎 ∩ 𝑒)) +𝑒 (𝑂‘(𝑎 ∖ 𝑒))) = (𝑂‘𝑎)}) | |
6 | 4, 5 | eqtrd 2794 | . . 3 ⊢ (𝑂 ∈ OutMeas → 𝑆 = {𝑒 ∈ 𝒫 ∪ dom 𝑂 ∣ ∀𝑎 ∈ 𝒫 ∪ dom 𝑂((𝑂‘(𝑎 ∩ 𝑒)) +𝑒 (𝑂‘(𝑎 ∖ 𝑒))) = (𝑂‘𝑎)}) |
7 | omedm 41237 | . . 3 ⊢ (𝑂 ∈ OutMeas → dom 𝑂 = 𝒫 ∪ dom 𝑂) | |
8 | 6, 7 | sseq12d 3775 | . 2 ⊢ (𝑂 ∈ OutMeas → (𝑆 ⊆ dom 𝑂 ↔ {𝑒 ∈ 𝒫 ∪ dom 𝑂 ∣ ∀𝑎 ∈ 𝒫 ∪ dom 𝑂((𝑂‘(𝑎 ∩ 𝑒)) +𝑒 (𝑂‘(𝑎 ∖ 𝑒))) = (𝑂‘𝑎)} ⊆ 𝒫 ∪ dom 𝑂)) |
9 | 2, 8 | mpbird 247 | 1 ⊢ (𝑂 ∈ OutMeas → 𝑆 ⊆ dom 𝑂) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1632 ∈ wcel 2139 ∀wral 3050 {crab 3054 ∖ cdif 3712 ∩ cin 3714 ⊆ wss 3715 𝒫 cpw 4302 ∪ cuni 4588 dom cdm 5266 ‘cfv 6049 (class class class)co 6814 +𝑒 cxad 12157 OutMeascome 41227 CaraGenccaragen 41229 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7115 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ral 3055 df-rex 3056 df-rab 3059 df-v 3342 df-sbc 3577 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-op 4328 df-uni 4589 df-br 4805 df-opab 4865 df-mpt 4882 df-id 5174 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-fv 6057 df-ov 6817 df-ome 41228 df-caragen 41230 |
This theorem is referenced by: caragensspw 41247 caragenuni 41249 caragendifcl 41252 caratheodorylem1 41264 caratheodorylem2 41265 dmvon 41344 voncmpl 41359 vonmblss 41378 |
Copyright terms: Public domain | W3C validator |