![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > caragenelss | Structured version Visualization version GIF version |
Description: An element of the Caratheodory's construction is a subset of the base set of the outer measure. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
Ref | Expression |
---|---|
caragenelss.o | ⊢ (𝜑 → 𝑂 ∈ OutMeas) |
caragenelss.s | ⊢ 𝑆 = (CaraGen‘𝑂) |
caragenelss.a | ⊢ (𝜑 → 𝐴 ∈ 𝑆) |
caragenelss.x | ⊢ 𝑋 = ∪ dom 𝑂 |
Ref | Expression |
---|---|
caragenelss | ⊢ (𝜑 → 𝐴 ⊆ 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | caragenelss.a | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ 𝑆) | |
2 | caragenelss.o | . . . . . 6 ⊢ (𝜑 → 𝑂 ∈ OutMeas) | |
3 | caragenelss.s | . . . . . 6 ⊢ 𝑆 = (CaraGen‘𝑂) | |
4 | 2, 3 | caragenel 41226 | . . . . 5 ⊢ (𝜑 → (𝐴 ∈ 𝑆 ↔ (𝐴 ∈ 𝒫 ∪ dom 𝑂 ∧ ∀𝑥 ∈ 𝒫 ∪ dom 𝑂((𝑂‘(𝑥 ∩ 𝐴)) +𝑒 (𝑂‘(𝑥 ∖ 𝐴))) = (𝑂‘𝑥)))) |
5 | 1, 4 | mpbid 222 | . . . 4 ⊢ (𝜑 → (𝐴 ∈ 𝒫 ∪ dom 𝑂 ∧ ∀𝑥 ∈ 𝒫 ∪ dom 𝑂((𝑂‘(𝑥 ∩ 𝐴)) +𝑒 (𝑂‘(𝑥 ∖ 𝐴))) = (𝑂‘𝑥))) |
6 | 5 | simpld 482 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝒫 ∪ dom 𝑂) |
7 | caragenelss.x | . . . . . 6 ⊢ 𝑋 = ∪ dom 𝑂 | |
8 | 7 | eqcomi 2780 | . . . . 5 ⊢ ∪ dom 𝑂 = 𝑋 |
9 | 8 | pweqi 4302 | . . . 4 ⊢ 𝒫 ∪ dom 𝑂 = 𝒫 𝑋 |
10 | 9 | a1i 11 | . . 3 ⊢ (𝜑 → 𝒫 ∪ dom 𝑂 = 𝒫 𝑋) |
11 | 6, 10 | eleqtrd 2852 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝒫 𝑋) |
12 | elpwg 4306 | . . 3 ⊢ (𝐴 ∈ 𝑆 → (𝐴 ∈ 𝒫 𝑋 ↔ 𝐴 ⊆ 𝑋)) | |
13 | 1, 12 | syl 17 | . 2 ⊢ (𝜑 → (𝐴 ∈ 𝒫 𝑋 ↔ 𝐴 ⊆ 𝑋)) |
14 | 11, 13 | mpbid 222 | 1 ⊢ (𝜑 → 𝐴 ⊆ 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 382 = wceq 1631 ∈ wcel 2145 ∀wral 3061 ∖ cdif 3720 ∩ cin 3722 ⊆ wss 3723 𝒫 cpw 4298 ∪ cuni 4575 dom cdm 5250 ‘cfv 6030 (class class class)co 6796 +𝑒 cxad 12149 OutMeascome 41220 CaraGenccaragen 41222 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-sep 4916 ax-nul 4924 ax-pow 4975 ax-pr 5035 ax-un 7100 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3353 df-sbc 3588 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-nul 4064 df-if 4227 df-pw 4300 df-sn 4318 df-pr 4320 df-op 4324 df-uni 4576 df-br 4788 df-opab 4848 df-mpt 4865 df-id 5158 df-xp 5256 df-rel 5257 df-cnv 5258 df-co 5259 df-dm 5260 df-rn 5261 df-iota 5993 df-fun 6032 df-fv 6038 df-ov 6799 df-caragen 41223 |
This theorem is referenced by: caragenuncllem 41243 caragenuncl 41244 |
Copyright terms: Public domain | W3C validator |