Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  caragendifcl Structured version   Visualization version   GIF version

Theorem caragendifcl 41049
Description: The Caratheodory's construction is closed under the complement operation. Second part of Step (b) in the proof of Theorem 113C of [Fremlin1] p. 19. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
caragendifcl.o (𝜑𝑂 ∈ OutMeas)
caragendifcl.s 𝑆 = (CaraGen‘𝑂)
caragendifcl.e (𝜑𝐸𝑆)
Assertion
Ref Expression
caragendifcl (𝜑 → ( 𝑆𝐸) ∈ 𝑆)

Proof of Theorem caragendifcl
Dummy variables 𝑎 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 caragendifcl.o . 2 (𝜑𝑂 ∈ OutMeas)
2 eqid 2651 . 2 dom 𝑂 = dom 𝑂
3 caragendifcl.s . 2 𝑆 = (CaraGen‘𝑂)
43caragenss 41039 . . . . . 6 (𝑂 ∈ OutMeas → 𝑆 ⊆ dom 𝑂)
51, 4syl 17 . . . . 5 (𝜑𝑆 ⊆ dom 𝑂)
65unissd 4494 . . . 4 (𝜑 𝑆 dom 𝑂)
76ssdifssd 3781 . . 3 (𝜑 → ( 𝑆𝐸) ⊆ dom 𝑂)
8 fvex 6239 . . . . . . . 8 (CaraGen‘𝑂) ∈ V
93, 8eqeltri 2726 . . . . . . 7 𝑆 ∈ V
109uniex 6995 . . . . . 6 𝑆 ∈ V
11 difexg 4841 . . . . . 6 ( 𝑆 ∈ V → ( 𝑆𝐸) ∈ V)
1210, 11ax-mp 5 . . . . 5 ( 𝑆𝐸) ∈ V
1312a1i 11 . . . 4 (𝜑 → ( 𝑆𝐸) ∈ V)
14 elpwg 4199 . . . 4 (( 𝑆𝐸) ∈ V → (( 𝑆𝐸) ∈ 𝒫 dom 𝑂 ↔ ( 𝑆𝐸) ⊆ dom 𝑂))
1513, 14syl 17 . . 3 (𝜑 → (( 𝑆𝐸) ∈ 𝒫 dom 𝑂 ↔ ( 𝑆𝐸) ⊆ dom 𝑂))
167, 15mpbird 247 . 2 (𝜑 → ( 𝑆𝐸) ∈ 𝒫 dom 𝑂)
17 elpwi 4201 . . . . . . . . 9 (𝑎 ∈ 𝒫 dom 𝑂𝑎 dom 𝑂)
1817adantl 481 . . . . . . . 8 ((𝜑𝑎 ∈ 𝒫 dom 𝑂) → 𝑎 dom 𝑂)
191, 3caragenuni 41046 . . . . . . . . . 10 (𝜑 𝑆 = dom 𝑂)
2019eqcomd 2657 . . . . . . . . 9 (𝜑 dom 𝑂 = 𝑆)
2120adantr 480 . . . . . . . 8 ((𝜑𝑎 ∈ 𝒫 dom 𝑂) → dom 𝑂 = 𝑆)
2218, 21sseqtrd 3674 . . . . . . 7 ((𝜑𝑎 ∈ 𝒫 dom 𝑂) → 𝑎 𝑆)
23 difin2 3923 . . . . . . 7 (𝑎 𝑆 → (𝑎𝐸) = (( 𝑆𝐸) ∩ 𝑎))
2422, 23syl 17 . . . . . 6 ((𝜑𝑎 ∈ 𝒫 dom 𝑂) → (𝑎𝐸) = (( 𝑆𝐸) ∩ 𝑎))
25 incom 3838 . . . . . . 7 (( 𝑆𝐸) ∩ 𝑎) = (𝑎 ∩ ( 𝑆𝐸))
2625a1i 11 . . . . . 6 ((𝜑𝑎 ∈ 𝒫 dom 𝑂) → (( 𝑆𝐸) ∩ 𝑎) = (𝑎 ∩ ( 𝑆𝐸)))
2724, 26eqtr2d 2686 . . . . 5 ((𝜑𝑎 ∈ 𝒫 dom 𝑂) → (𝑎 ∩ ( 𝑆𝐸)) = (𝑎𝐸))
2827fveq2d 6233 . . . 4 ((𝜑𝑎 ∈ 𝒫 dom 𝑂) → (𝑂‘(𝑎 ∩ ( 𝑆𝐸))) = (𝑂‘(𝑎𝐸)))
2922ssdifd 3779 . . . . . . . 8 ((𝜑𝑎 ∈ 𝒫 dom 𝑂) → (𝑎𝐸) ⊆ ( 𝑆𝐸))
30 sscon 3777 . . . . . . . 8 ((𝑎𝐸) ⊆ ( 𝑆𝐸) → (𝑎 ∖ ( 𝑆𝐸)) ⊆ (𝑎 ∖ (𝑎𝐸)))
3129, 30syl 17 . . . . . . 7 ((𝜑𝑎 ∈ 𝒫 dom 𝑂) → (𝑎 ∖ ( 𝑆𝐸)) ⊆ (𝑎 ∖ (𝑎𝐸)))
32 dfin4 3900 . . . . . . . . 9 (𝑎𝐸) = (𝑎 ∖ (𝑎𝐸))
3332a1i 11 . . . . . . . 8 ((𝜑𝑎 ∈ 𝒫 dom 𝑂) → (𝑎𝐸) = (𝑎 ∖ (𝑎𝐸)))
34 eqimss2 3691 . . . . . . . 8 ((𝑎𝐸) = (𝑎 ∖ (𝑎𝐸)) → (𝑎 ∖ (𝑎𝐸)) ⊆ (𝑎𝐸))
3533, 34syl 17 . . . . . . 7 ((𝜑𝑎 ∈ 𝒫 dom 𝑂) → (𝑎 ∖ (𝑎𝐸)) ⊆ (𝑎𝐸))
3631, 35sstrd 3646 . . . . . 6 ((𝜑𝑎 ∈ 𝒫 dom 𝑂) → (𝑎 ∖ ( 𝑆𝐸)) ⊆ (𝑎𝐸))
37 elinel1 3832 . . . . . . . . 9 (𝑥 ∈ (𝑎𝐸) → 𝑥𝑎)
38 elinel2 3833 . . . . . . . . . 10 (𝑥 ∈ (𝑎𝐸) → 𝑥𝐸)
39 elndif 3767 . . . . . . . . . 10 (𝑥𝐸 → ¬ 𝑥 ∈ ( 𝑆𝐸))
4038, 39syl 17 . . . . . . . . 9 (𝑥 ∈ (𝑎𝐸) → ¬ 𝑥 ∈ ( 𝑆𝐸))
4137, 40eldifd 3618 . . . . . . . 8 (𝑥 ∈ (𝑎𝐸) → 𝑥 ∈ (𝑎 ∖ ( 𝑆𝐸)))
4241ssriv 3640 . . . . . . 7 (𝑎𝐸) ⊆ (𝑎 ∖ ( 𝑆𝐸))
4342a1i 11 . . . . . 6 ((𝜑𝑎 ∈ 𝒫 dom 𝑂) → (𝑎𝐸) ⊆ (𝑎 ∖ ( 𝑆𝐸)))
4436, 43eqssd 3653 . . . . 5 ((𝜑𝑎 ∈ 𝒫 dom 𝑂) → (𝑎 ∖ ( 𝑆𝐸)) = (𝑎𝐸))
4544fveq2d 6233 . . . 4 ((𝜑𝑎 ∈ 𝒫 dom 𝑂) → (𝑂‘(𝑎 ∖ ( 𝑆𝐸))) = (𝑂‘(𝑎𝐸)))
4628, 45oveq12d 6708 . . 3 ((𝜑𝑎 ∈ 𝒫 dom 𝑂) → ((𝑂‘(𝑎 ∩ ( 𝑆𝐸))) +𝑒 (𝑂‘(𝑎 ∖ ( 𝑆𝐸)))) = ((𝑂‘(𝑎𝐸)) +𝑒 (𝑂‘(𝑎𝐸))))
47 iccssxr 12294 . . . . 5 (0[,]+∞) ⊆ ℝ*
481adantr 480 . . . . . 6 ((𝜑𝑎 ∈ 𝒫 dom 𝑂) → 𝑂 ∈ OutMeas)
4918ssdifssd 3781 . . . . . 6 ((𝜑𝑎 ∈ 𝒫 dom 𝑂) → (𝑎𝐸) ⊆ dom 𝑂)
5048, 2, 49omecl 41038 . . . . 5 ((𝜑𝑎 ∈ 𝒫 dom 𝑂) → (𝑂‘(𝑎𝐸)) ∈ (0[,]+∞))
5147, 50sseldi 3634 . . . 4 ((𝜑𝑎 ∈ 𝒫 dom 𝑂) → (𝑂‘(𝑎𝐸)) ∈ ℝ*)
52 ssinss1 3874 . . . . . . . 8 (𝑎 dom 𝑂 → (𝑎𝐸) ⊆ dom 𝑂)
5317, 52syl 17 . . . . . . 7 (𝑎 ∈ 𝒫 dom 𝑂 → (𝑎𝐸) ⊆ dom 𝑂)
5453adantl 481 . . . . . 6 ((𝜑𝑎 ∈ 𝒫 dom 𝑂) → (𝑎𝐸) ⊆ dom 𝑂)
5548, 2, 54omecl 41038 . . . . 5 ((𝜑𝑎 ∈ 𝒫 dom 𝑂) → (𝑂‘(𝑎𝐸)) ∈ (0[,]+∞))
5647, 55sseldi 3634 . . . 4 ((𝜑𝑎 ∈ 𝒫 dom 𝑂) → (𝑂‘(𝑎𝐸)) ∈ ℝ*)
5751, 56xaddcomd 39853 . . 3 ((𝜑𝑎 ∈ 𝒫 dom 𝑂) → ((𝑂‘(𝑎𝐸)) +𝑒 (𝑂‘(𝑎𝐸))) = ((𝑂‘(𝑎𝐸)) +𝑒 (𝑂‘(𝑎𝐸))))
58 caragendifcl.e . . . . . 6 (𝜑𝐸𝑆)
591, 3caragenel 41030 . . . . . 6 (𝜑 → (𝐸𝑆 ↔ (𝐸 ∈ 𝒫 dom 𝑂 ∧ ∀𝑎 ∈ 𝒫 dom 𝑂((𝑂‘(𝑎𝐸)) +𝑒 (𝑂‘(𝑎𝐸))) = (𝑂𝑎))))
6058, 59mpbid 222 . . . . 5 (𝜑 → (𝐸 ∈ 𝒫 dom 𝑂 ∧ ∀𝑎 ∈ 𝒫 dom 𝑂((𝑂‘(𝑎𝐸)) +𝑒 (𝑂‘(𝑎𝐸))) = (𝑂𝑎)))
6160simprd 478 . . . 4 (𝜑 → ∀𝑎 ∈ 𝒫 dom 𝑂((𝑂‘(𝑎𝐸)) +𝑒 (𝑂‘(𝑎𝐸))) = (𝑂𝑎))
6261r19.21bi 2961 . . 3 ((𝜑𝑎 ∈ 𝒫 dom 𝑂) → ((𝑂‘(𝑎𝐸)) +𝑒 (𝑂‘(𝑎𝐸))) = (𝑂𝑎))
6346, 57, 623eqtrd 2689 . 2 ((𝜑𝑎 ∈ 𝒫 dom 𝑂) → ((𝑂‘(𝑎 ∩ ( 𝑆𝐸))) +𝑒 (𝑂‘(𝑎 ∖ ( 𝑆𝐸)))) = (𝑂𝑎))
641, 2, 3, 16, 63carageneld 41037 1 (𝜑 → ( 𝑆𝐸) ∈ 𝑆)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 383   = wceq 1523  wcel 2030  wral 2941  Vcvv 3231  cdif 3604  cin 3606  wss 3607  𝒫 cpw 4191   cuni 4468  dom cdm 5143  cfv 5926  (class class class)co 6690  0cc0 9974  +∞cpnf 10109  *cxr 10111   +𝑒 cxad 11982  [,]cicc 12216  OutMeascome 41024  CaraGenccaragen 41026
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-id 5053  df-po 5064  df-so 5065  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-1st 7210  df-2nd 7211  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-xadd 11985  df-icc 12220  df-ome 41025  df-caragen 41027
This theorem is referenced by:  caragensal  41060
  Copyright terms: Public domain W3C validator