![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > caovordig | Structured version Visualization version GIF version |
Description: Convert an operation ordering law to class notation. (Contributed by Mario Carneiro, 31-Dec-2014.) |
Ref | Expression |
---|---|
caovordig.1 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → (𝑥𝑅𝑦 → (𝑧𝐹𝑥)𝑅(𝑧𝐹𝑦))) |
Ref | Expression |
---|---|
caovordig | ⊢ ((𝜑 ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆)) → (𝐴𝑅𝐵 → (𝐶𝐹𝐴)𝑅(𝐶𝐹𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | caovordig.1 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → (𝑥𝑅𝑦 → (𝑧𝐹𝑥)𝑅(𝑧𝐹𝑦))) | |
2 | 1 | ralrimivvva 3001 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 ∀𝑧 ∈ 𝑆 (𝑥𝑅𝑦 → (𝑧𝐹𝑥)𝑅(𝑧𝐹𝑦))) |
3 | breq1 4688 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑥𝑅𝑦 ↔ 𝐴𝑅𝑦)) | |
4 | oveq2 6698 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑧𝐹𝑥) = (𝑧𝐹𝐴)) | |
5 | 4 | breq1d 4695 | . . . 4 ⊢ (𝑥 = 𝐴 → ((𝑧𝐹𝑥)𝑅(𝑧𝐹𝑦) ↔ (𝑧𝐹𝐴)𝑅(𝑧𝐹𝑦))) |
6 | 3, 5 | imbi12d 333 | . . 3 ⊢ (𝑥 = 𝐴 → ((𝑥𝑅𝑦 → (𝑧𝐹𝑥)𝑅(𝑧𝐹𝑦)) ↔ (𝐴𝑅𝑦 → (𝑧𝐹𝐴)𝑅(𝑧𝐹𝑦)))) |
7 | breq2 4689 | . . . 4 ⊢ (𝑦 = 𝐵 → (𝐴𝑅𝑦 ↔ 𝐴𝑅𝐵)) | |
8 | oveq2 6698 | . . . . 5 ⊢ (𝑦 = 𝐵 → (𝑧𝐹𝑦) = (𝑧𝐹𝐵)) | |
9 | 8 | breq2d 4697 | . . . 4 ⊢ (𝑦 = 𝐵 → ((𝑧𝐹𝐴)𝑅(𝑧𝐹𝑦) ↔ (𝑧𝐹𝐴)𝑅(𝑧𝐹𝐵))) |
10 | 7, 9 | imbi12d 333 | . . 3 ⊢ (𝑦 = 𝐵 → ((𝐴𝑅𝑦 → (𝑧𝐹𝐴)𝑅(𝑧𝐹𝑦)) ↔ (𝐴𝑅𝐵 → (𝑧𝐹𝐴)𝑅(𝑧𝐹𝐵)))) |
11 | oveq1 6697 | . . . . 5 ⊢ (𝑧 = 𝐶 → (𝑧𝐹𝐴) = (𝐶𝐹𝐴)) | |
12 | oveq1 6697 | . . . . 5 ⊢ (𝑧 = 𝐶 → (𝑧𝐹𝐵) = (𝐶𝐹𝐵)) | |
13 | 11, 12 | breq12d 4698 | . . . 4 ⊢ (𝑧 = 𝐶 → ((𝑧𝐹𝐴)𝑅(𝑧𝐹𝐵) ↔ (𝐶𝐹𝐴)𝑅(𝐶𝐹𝐵))) |
14 | 13 | imbi2d 329 | . . 3 ⊢ (𝑧 = 𝐶 → ((𝐴𝑅𝐵 → (𝑧𝐹𝐴)𝑅(𝑧𝐹𝐵)) ↔ (𝐴𝑅𝐵 → (𝐶𝐹𝐴)𝑅(𝐶𝐹𝐵)))) |
15 | 6, 10, 14 | rspc3v 3356 | . 2 ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆) → (∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 ∀𝑧 ∈ 𝑆 (𝑥𝑅𝑦 → (𝑧𝐹𝑥)𝑅(𝑧𝐹𝑦)) → (𝐴𝑅𝐵 → (𝐶𝐹𝐴)𝑅(𝐶𝐹𝐵)))) |
16 | 2, 15 | mpan9 485 | 1 ⊢ ((𝜑 ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆)) → (𝐴𝑅𝐵 → (𝐶𝐹𝐴)𝑅(𝐶𝐹𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∧ w3a 1054 = wceq 1523 ∈ wcel 2030 ∀wral 2941 class class class wbr 4685 (class class class)co 6690 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ral 2946 df-rex 2947 df-rab 2950 df-v 3233 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-sn 4211 df-pr 4213 df-op 4217 df-uni 4469 df-br 4686 df-iota 5889 df-fv 5934 df-ov 6693 |
This theorem is referenced by: caovordid 6882 |
Copyright terms: Public domain | W3C validator |