MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  caovcom Structured version   Visualization version   GIF version

Theorem caovcom 6997
Description: Convert an operation commutative law to class notation. (Contributed by NM, 26-Aug-1995.) (Revised by Mario Carneiro, 1-Jun-2013.)
Hypotheses
Ref Expression
caovcom.1 𝐴 ∈ V
caovcom.2 𝐵 ∈ V
caovcom.3 (𝑥𝐹𝑦) = (𝑦𝐹𝑥)
Assertion
Ref Expression
caovcom (𝐴𝐹𝐵) = (𝐵𝐹𝐴)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐹,𝑦

Proof of Theorem caovcom
StepHypRef Expression
1 caovcom.1 . 2 𝐴 ∈ V
2 caovcom.2 . . 3 𝐵 ∈ V
31, 2pm3.2i 470 . 2 (𝐴 ∈ V ∧ 𝐵 ∈ V)
4 caovcom.3 . . . 4 (𝑥𝐹𝑦) = (𝑦𝐹𝑥)
54a1i 11 . . 3 ((𝐴 ∈ V ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V)) → (𝑥𝐹𝑦) = (𝑦𝐹𝑥))
65caovcomg 6995 . 2 ((𝐴 ∈ V ∧ (𝐴 ∈ V ∧ 𝐵 ∈ V)) → (𝐴𝐹𝐵) = (𝐵𝐹𝐴))
71, 3, 6mp2an 710 1 (𝐴𝐹𝐵) = (𝐵𝐹𝐴)
Colors of variables: wff setvar class
Syntax hints:  wa 383   = wceq 1632  wcel 2139  Vcvv 3340  (class class class)co 6814
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ral 3055  df-rex 3056  df-rab 3059  df-v 3342  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-sn 4322  df-pr 4324  df-op 4328  df-uni 4589  df-br 4805  df-iota 6012  df-fv 6057  df-ov 6817
This theorem is referenced by:  caovord2  7012  caov32  7027  caov12  7028  caov42  7033  caovdir  7034  caovmo  7037  ecopovsym  8018  ecopover  8020  genpcl  10042
  Copyright terms: Public domain W3C validator