MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  caofinvl Structured version   Visualization version   GIF version

Theorem caofinvl 7075
Description: Transfer a left inverse law to the function operation. (Contributed by NM, 22-Oct-2014.)
Hypotheses
Ref Expression
caofref.1 (𝜑𝐴𝑉)
caofref.2 (𝜑𝐹:𝐴𝑆)
caofinv.3 (𝜑𝐵𝑊)
caofinv.4 (𝜑𝑁:𝑆𝑆)
caofinv.5 (𝜑𝐺 = (𝑣𝐴 ↦ (𝑁‘(𝐹𝑣))))
caofinvl.6 ((𝜑𝑥𝑆) → ((𝑁𝑥)𝑅𝑥) = 𝐵)
Assertion
Ref Expression
caofinvl (𝜑 → (𝐺𝑓 𝑅𝐹) = (𝐴 × {𝐵}))
Distinct variable groups:   𝑥,𝐵   𝑥,𝐹   𝑥,𝐺   𝜑,𝑥   𝑥,𝑅   𝑥,𝑆   𝑣,𝐴   𝑣,𝐹,𝑥   𝑥,𝑁,𝑣   𝑣,𝑆   𝜑,𝑣
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑣)   𝑅(𝑣)   𝐺(𝑣)   𝑉(𝑥,𝑣)   𝑊(𝑥,𝑣)

Proof of Theorem caofinvl
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 caofref.1 . . . 4 (𝜑𝐴𝑉)
2 caofinv.4 . . . . . . . . 9 (𝜑𝑁:𝑆𝑆)
32adantr 466 . . . . . . . 8 ((𝜑𝑣𝐴) → 𝑁:𝑆𝑆)
4 caofref.2 . . . . . . . . 9 (𝜑𝐹:𝐴𝑆)
54ffvelrnda 6504 . . . . . . . 8 ((𝜑𝑣𝐴) → (𝐹𝑣) ∈ 𝑆)
63, 5ffvelrnd 6505 . . . . . . 7 ((𝜑𝑣𝐴) → (𝑁‘(𝐹𝑣)) ∈ 𝑆)
76fmpttd 6530 . . . . . 6 (𝜑 → (𝑣𝐴 ↦ (𝑁‘(𝐹𝑣))):𝐴𝑆)
8 caofinv.5 . . . . . . 7 (𝜑𝐺 = (𝑣𝐴 ↦ (𝑁‘(𝐹𝑣))))
98feq1d 6169 . . . . . 6 (𝜑 → (𝐺:𝐴𝑆 ↔ (𝑣𝐴 ↦ (𝑁‘(𝐹𝑣))):𝐴𝑆))
107, 9mpbird 247 . . . . 5 (𝜑𝐺:𝐴𝑆)
1110ffvelrnda 6504 . . . 4 ((𝜑𝑤𝐴) → (𝐺𝑤) ∈ 𝑆)
124ffvelrnda 6504 . . . 4 ((𝜑𝑤𝐴) → (𝐹𝑤) ∈ 𝑆)
13 fvex 6344 . . . . . . 7 (𝑁‘(𝐹𝑣)) ∈ V
14 eqid 2771 . . . . . . 7 (𝑣𝐴 ↦ (𝑁‘(𝐹𝑣))) = (𝑣𝐴 ↦ (𝑁‘(𝐹𝑣)))
1513, 14fnmpti 6161 . . . . . 6 (𝑣𝐴 ↦ (𝑁‘(𝐹𝑣))) Fn 𝐴
168fneq1d 6120 . . . . . 6 (𝜑 → (𝐺 Fn 𝐴 ↔ (𝑣𝐴 ↦ (𝑁‘(𝐹𝑣))) Fn 𝐴))
1715, 16mpbiri 248 . . . . 5 (𝜑𝐺 Fn 𝐴)
18 dffn5 6385 . . . . 5 (𝐺 Fn 𝐴𝐺 = (𝑤𝐴 ↦ (𝐺𝑤)))
1917, 18sylib 208 . . . 4 (𝜑𝐺 = (𝑤𝐴 ↦ (𝐺𝑤)))
204feqmptd 6393 . . . 4 (𝜑𝐹 = (𝑤𝐴 ↦ (𝐹𝑤)))
211, 11, 12, 19, 20offval2 7065 . . 3 (𝜑 → (𝐺𝑓 𝑅𝐹) = (𝑤𝐴 ↦ ((𝐺𝑤)𝑅(𝐹𝑤))))
228fveq1d 6335 . . . . . . 7 (𝜑 → (𝐺𝑤) = ((𝑣𝐴 ↦ (𝑁‘(𝐹𝑣)))‘𝑤))
23 fveq2 6333 . . . . . . . . 9 (𝑣 = 𝑤 → (𝐹𝑣) = (𝐹𝑤))
2423fveq2d 6337 . . . . . . . 8 (𝑣 = 𝑤 → (𝑁‘(𝐹𝑣)) = (𝑁‘(𝐹𝑤)))
25 fvex 6344 . . . . . . . 8 (𝑁‘(𝐹𝑤)) ∈ V
2624, 14, 25fvmpt 6426 . . . . . . 7 (𝑤𝐴 → ((𝑣𝐴 ↦ (𝑁‘(𝐹𝑣)))‘𝑤) = (𝑁‘(𝐹𝑤)))
2722, 26sylan9eq 2825 . . . . . 6 ((𝜑𝑤𝐴) → (𝐺𝑤) = (𝑁‘(𝐹𝑤)))
2827oveq1d 6811 . . . . 5 ((𝜑𝑤𝐴) → ((𝐺𝑤)𝑅(𝐹𝑤)) = ((𝑁‘(𝐹𝑤))𝑅(𝐹𝑤)))
29 fveq2 6333 . . . . . . . 8 (𝑥 = (𝐹𝑤) → (𝑁𝑥) = (𝑁‘(𝐹𝑤)))
30 id 22 . . . . . . . 8 (𝑥 = (𝐹𝑤) → 𝑥 = (𝐹𝑤))
3129, 30oveq12d 6814 . . . . . . 7 (𝑥 = (𝐹𝑤) → ((𝑁𝑥)𝑅𝑥) = ((𝑁‘(𝐹𝑤))𝑅(𝐹𝑤)))
3231eqeq1d 2773 . . . . . 6 (𝑥 = (𝐹𝑤) → (((𝑁𝑥)𝑅𝑥) = 𝐵 ↔ ((𝑁‘(𝐹𝑤))𝑅(𝐹𝑤)) = 𝐵))
33 caofinvl.6 . . . . . . . 8 ((𝜑𝑥𝑆) → ((𝑁𝑥)𝑅𝑥) = 𝐵)
3433ralrimiva 3115 . . . . . . 7 (𝜑 → ∀𝑥𝑆 ((𝑁𝑥)𝑅𝑥) = 𝐵)
3534adantr 466 . . . . . 6 ((𝜑𝑤𝐴) → ∀𝑥𝑆 ((𝑁𝑥)𝑅𝑥) = 𝐵)
3632, 35, 12rspcdva 3466 . . . . 5 ((𝜑𝑤𝐴) → ((𝑁‘(𝐹𝑤))𝑅(𝐹𝑤)) = 𝐵)
3728, 36eqtrd 2805 . . . 4 ((𝜑𝑤𝐴) → ((𝐺𝑤)𝑅(𝐹𝑤)) = 𝐵)
3837mpteq2dva 4879 . . 3 (𝜑 → (𝑤𝐴 ↦ ((𝐺𝑤)𝑅(𝐹𝑤))) = (𝑤𝐴𝐵))
3921, 38eqtrd 2805 . 2 (𝜑 → (𝐺𝑓 𝑅𝐹) = (𝑤𝐴𝐵))
40 fconstmpt 5302 . 2 (𝐴 × {𝐵}) = (𝑤𝐴𝐵)
4139, 40syl6eqr 2823 1 (𝜑 → (𝐺𝑓 𝑅𝐹) = (𝐴 × {𝐵}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382   = wceq 1631  wcel 2145  wral 3061  {csn 4317  cmpt 4864   × cxp 5248   Fn wfn 6025  wf 6026  cfv 6030  (class class class)co 6796  𝑓 cof 7046
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4905  ax-sep 4916  ax-nul 4924  ax-pow 4975  ax-pr 5035
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-nul 4064  df-if 4227  df-sn 4318  df-pr 4320  df-op 4324  df-uni 4576  df-iun 4657  df-br 4788  df-opab 4848  df-mpt 4865  df-id 5158  df-xp 5256  df-rel 5257  df-cnv 5258  df-co 5259  df-dm 5260  df-rn 5261  df-res 5262  df-ima 5263  df-iota 5993  df-fun 6032  df-fn 6033  df-f 6034  df-f1 6035  df-fo 6036  df-f1o 6037  df-fv 6038  df-ov 6799  df-oprab 6800  df-mpt2 6801  df-of 7048
This theorem is referenced by:  grpvlinv  20418  lflnegl  34885
  Copyright terms: Public domain W3C validator