![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > caofcom | Structured version Visualization version GIF version |
Description: Transfer a commutative law to the function operation. (Contributed by Mario Carneiro, 26-Jul-2014.) |
Ref | Expression |
---|---|
caofref.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
caofref.2 | ⊢ (𝜑 → 𝐹:𝐴⟶𝑆) |
caofcom.3 | ⊢ (𝜑 → 𝐺:𝐴⟶𝑆) |
caofcom.4 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥𝑅𝑦) = (𝑦𝑅𝑥)) |
Ref | Expression |
---|---|
caofcom | ⊢ (𝜑 → (𝐹 ∘𝑓 𝑅𝐺) = (𝐺 ∘𝑓 𝑅𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | caofref.2 | . . . . . 6 ⊢ (𝜑 → 𝐹:𝐴⟶𝑆) | |
2 | 1 | ffvelrnda 6523 | . . . . 5 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → (𝐹‘𝑤) ∈ 𝑆) |
3 | caofcom.3 | . . . . . 6 ⊢ (𝜑 → 𝐺:𝐴⟶𝑆) | |
4 | 3 | ffvelrnda 6523 | . . . . 5 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → (𝐺‘𝑤) ∈ 𝑆) |
5 | 2, 4 | jca 555 | . . . 4 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → ((𝐹‘𝑤) ∈ 𝑆 ∧ (𝐺‘𝑤) ∈ 𝑆)) |
6 | caofcom.4 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥𝑅𝑦) = (𝑦𝑅𝑥)) | |
7 | 6 | caovcomg 6995 | . . . 4 ⊢ ((𝜑 ∧ ((𝐹‘𝑤) ∈ 𝑆 ∧ (𝐺‘𝑤) ∈ 𝑆)) → ((𝐹‘𝑤)𝑅(𝐺‘𝑤)) = ((𝐺‘𝑤)𝑅(𝐹‘𝑤))) |
8 | 5, 7 | syldan 488 | . . 3 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → ((𝐹‘𝑤)𝑅(𝐺‘𝑤)) = ((𝐺‘𝑤)𝑅(𝐹‘𝑤))) |
9 | 8 | mpteq2dva 4896 | . 2 ⊢ (𝜑 → (𝑤 ∈ 𝐴 ↦ ((𝐹‘𝑤)𝑅(𝐺‘𝑤))) = (𝑤 ∈ 𝐴 ↦ ((𝐺‘𝑤)𝑅(𝐹‘𝑤)))) |
10 | caofref.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
11 | 1 | feqmptd 6412 | . . 3 ⊢ (𝜑 → 𝐹 = (𝑤 ∈ 𝐴 ↦ (𝐹‘𝑤))) |
12 | 3 | feqmptd 6412 | . . 3 ⊢ (𝜑 → 𝐺 = (𝑤 ∈ 𝐴 ↦ (𝐺‘𝑤))) |
13 | 10, 2, 4, 11, 12 | offval2 7080 | . 2 ⊢ (𝜑 → (𝐹 ∘𝑓 𝑅𝐺) = (𝑤 ∈ 𝐴 ↦ ((𝐹‘𝑤)𝑅(𝐺‘𝑤)))) |
14 | 10, 4, 2, 12, 11 | offval2 7080 | . 2 ⊢ (𝜑 → (𝐺 ∘𝑓 𝑅𝐹) = (𝑤 ∈ 𝐴 ↦ ((𝐺‘𝑤)𝑅(𝐹‘𝑤)))) |
15 | 9, 13, 14 | 3eqtr4d 2804 | 1 ⊢ (𝜑 → (𝐹 ∘𝑓 𝑅𝐺) = (𝐺 ∘𝑓 𝑅𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1632 ∈ wcel 2139 ↦ cmpt 4881 ⟶wf 6045 ‘cfv 6049 (class class class)co 6814 ∘𝑓 cof 7061 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-rep 4923 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-ral 3055 df-rex 3056 df-reu 3057 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-sn 4322 df-pr 4324 df-op 4328 df-uni 4589 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-id 5174 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-ov 6817 df-oprab 6818 df-mpt2 6819 df-of 7063 |
This theorem is referenced by: plydivlem4 24270 quotcan 24283 dchrabl 25199 plymulx0 30954 lfladdcom 34880 expgrowth 39054 amgmwlem 43079 |
Copyright terms: Public domain | W3C validator |