MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cantnfval2 Structured version   Visualization version   GIF version

Theorem cantnfval2 8604
Description: Alternate expression for the value of the Cantor normal form function. (Contributed by Mario Carneiro, 25-May-2015.) (Revised by AV, 28-Jun-2019.)
Hypotheses
Ref Expression
cantnfs.s 𝑆 = dom (𝐴 CNF 𝐵)
cantnfs.a (𝜑𝐴 ∈ On)
cantnfs.b (𝜑𝐵 ∈ On)
cantnfcl.g 𝐺 = OrdIso( E , (𝐹 supp ∅))
cantnfcl.f (𝜑𝐹𝑆)
cantnfval.h 𝐻 = seq𝜔((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴𝑜 (𝐺𝑘)) ·𝑜 (𝐹‘(𝐺𝑘))) +𝑜 𝑧)), ∅)
Assertion
Ref Expression
cantnfval2 (𝜑 → ((𝐴 CNF 𝐵)‘𝐹) = (seq𝜔((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴𝑜 (𝐺𝑘)) ·𝑜 (𝐹‘(𝐺𝑘))) +𝑜 𝑧)), ∅)‘dom 𝐺))
Distinct variable groups:   𝑧,𝑘,𝐵   𝐴,𝑘,𝑧   𝑘,𝐹,𝑧   𝑆,𝑘,𝑧   𝑘,𝐺,𝑧   𝜑,𝑘,𝑧
Allowed substitution hints:   𝐻(𝑧,𝑘)

Proof of Theorem cantnfval2
Dummy variables 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cantnfs.s . . 3 𝑆 = dom (𝐴 CNF 𝐵)
2 cantnfs.a . . 3 (𝜑𝐴 ∈ On)
3 cantnfs.b . . 3 (𝜑𝐵 ∈ On)
4 cantnfcl.g . . 3 𝐺 = OrdIso( E , (𝐹 supp ∅))
5 cantnfcl.f . . 3 (𝜑𝐹𝑆)
6 cantnfval.h . . 3 𝐻 = seq𝜔((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴𝑜 (𝐺𝑘)) ·𝑜 (𝐹‘(𝐺𝑘))) +𝑜 𝑧)), ∅)
71, 2, 3, 4, 5, 6cantnfval 8603 . 2 (𝜑 → ((𝐴 CNF 𝐵)‘𝐹) = (𝐻‘dom 𝐺))
8 ssid 3657 . . 3 dom 𝐺 ⊆ dom 𝐺
91, 2, 3, 4, 5cantnfcl 8602 . . . . 5 (𝜑 → ( E We (𝐹 supp ∅) ∧ dom 𝐺 ∈ ω))
109simprd 478 . . . 4 (𝜑 → dom 𝐺 ∈ ω)
11 sseq1 3659 . . . . . . 7 (𝑢 = ∅ → (𝑢 ⊆ dom 𝐺 ↔ ∅ ⊆ dom 𝐺))
12 fveq2 6229 . . . . . . . . 9 (𝑢 = ∅ → (𝐻𝑢) = (𝐻‘∅))
13 0ex 4823 . . . . . . . . . 10 ∅ ∈ V
146seqom0g 7596 . . . . . . . . . 10 (∅ ∈ V → (𝐻‘∅) = ∅)
1513, 14ax-mp 5 . . . . . . . . 9 (𝐻‘∅) = ∅
1612, 15syl6eq 2701 . . . . . . . 8 (𝑢 = ∅ → (𝐻𝑢) = ∅)
17 fveq2 6229 . . . . . . . . 9 (𝑢 = ∅ → (seq𝜔((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴𝑜 (𝐺𝑘)) ·𝑜 (𝐹‘(𝐺𝑘))) +𝑜 𝑧)), ∅)‘𝑢) = (seq𝜔((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴𝑜 (𝐺𝑘)) ·𝑜 (𝐹‘(𝐺𝑘))) +𝑜 𝑧)), ∅)‘∅))
18 eqid 2651 . . . . . . . . . . 11 seq𝜔((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴𝑜 (𝐺𝑘)) ·𝑜 (𝐹‘(𝐺𝑘))) +𝑜 𝑧)), ∅) = seq𝜔((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴𝑜 (𝐺𝑘)) ·𝑜 (𝐹‘(𝐺𝑘))) +𝑜 𝑧)), ∅)
1918seqom0g 7596 . . . . . . . . . 10 (∅ ∈ V → (seq𝜔((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴𝑜 (𝐺𝑘)) ·𝑜 (𝐹‘(𝐺𝑘))) +𝑜 𝑧)), ∅)‘∅) = ∅)
2013, 19ax-mp 5 . . . . . . . . 9 (seq𝜔((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴𝑜 (𝐺𝑘)) ·𝑜 (𝐹‘(𝐺𝑘))) +𝑜 𝑧)), ∅)‘∅) = ∅
2117, 20syl6eq 2701 . . . . . . . 8 (𝑢 = ∅ → (seq𝜔((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴𝑜 (𝐺𝑘)) ·𝑜 (𝐹‘(𝐺𝑘))) +𝑜 𝑧)), ∅)‘𝑢) = ∅)
2216, 21eqeq12d 2666 . . . . . . 7 (𝑢 = ∅ → ((𝐻𝑢) = (seq𝜔((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴𝑜 (𝐺𝑘)) ·𝑜 (𝐹‘(𝐺𝑘))) +𝑜 𝑧)), ∅)‘𝑢) ↔ ∅ = ∅))
2311, 22imbi12d 333 . . . . . 6 (𝑢 = ∅ → ((𝑢 ⊆ dom 𝐺 → (𝐻𝑢) = (seq𝜔((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴𝑜 (𝐺𝑘)) ·𝑜 (𝐹‘(𝐺𝑘))) +𝑜 𝑧)), ∅)‘𝑢)) ↔ (∅ ⊆ dom 𝐺 → ∅ = ∅)))
2423imbi2d 329 . . . . 5 (𝑢 = ∅ → ((𝜑 → (𝑢 ⊆ dom 𝐺 → (𝐻𝑢) = (seq𝜔((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴𝑜 (𝐺𝑘)) ·𝑜 (𝐹‘(𝐺𝑘))) +𝑜 𝑧)), ∅)‘𝑢))) ↔ (𝜑 → (∅ ⊆ dom 𝐺 → ∅ = ∅))))
25 sseq1 3659 . . . . . . 7 (𝑢 = 𝑣 → (𝑢 ⊆ dom 𝐺𝑣 ⊆ dom 𝐺))
26 fveq2 6229 . . . . . . . 8 (𝑢 = 𝑣 → (𝐻𝑢) = (𝐻𝑣))
27 fveq2 6229 . . . . . . . 8 (𝑢 = 𝑣 → (seq𝜔((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴𝑜 (𝐺𝑘)) ·𝑜 (𝐹‘(𝐺𝑘))) +𝑜 𝑧)), ∅)‘𝑢) = (seq𝜔((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴𝑜 (𝐺𝑘)) ·𝑜 (𝐹‘(𝐺𝑘))) +𝑜 𝑧)), ∅)‘𝑣))
2826, 27eqeq12d 2666 . . . . . . 7 (𝑢 = 𝑣 → ((𝐻𝑢) = (seq𝜔((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴𝑜 (𝐺𝑘)) ·𝑜 (𝐹‘(𝐺𝑘))) +𝑜 𝑧)), ∅)‘𝑢) ↔ (𝐻𝑣) = (seq𝜔((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴𝑜 (𝐺𝑘)) ·𝑜 (𝐹‘(𝐺𝑘))) +𝑜 𝑧)), ∅)‘𝑣)))
2925, 28imbi12d 333 . . . . . 6 (𝑢 = 𝑣 → ((𝑢 ⊆ dom 𝐺 → (𝐻𝑢) = (seq𝜔((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴𝑜 (𝐺𝑘)) ·𝑜 (𝐹‘(𝐺𝑘))) +𝑜 𝑧)), ∅)‘𝑢)) ↔ (𝑣 ⊆ dom 𝐺 → (𝐻𝑣) = (seq𝜔((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴𝑜 (𝐺𝑘)) ·𝑜 (𝐹‘(𝐺𝑘))) +𝑜 𝑧)), ∅)‘𝑣))))
3029imbi2d 329 . . . . 5 (𝑢 = 𝑣 → ((𝜑 → (𝑢 ⊆ dom 𝐺 → (𝐻𝑢) = (seq𝜔((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴𝑜 (𝐺𝑘)) ·𝑜 (𝐹‘(𝐺𝑘))) +𝑜 𝑧)), ∅)‘𝑢))) ↔ (𝜑 → (𝑣 ⊆ dom 𝐺 → (𝐻𝑣) = (seq𝜔((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴𝑜 (𝐺𝑘)) ·𝑜 (𝐹‘(𝐺𝑘))) +𝑜 𝑧)), ∅)‘𝑣)))))
31 sseq1 3659 . . . . . . 7 (𝑢 = suc 𝑣 → (𝑢 ⊆ dom 𝐺 ↔ suc 𝑣 ⊆ dom 𝐺))
32 fveq2 6229 . . . . . . . 8 (𝑢 = suc 𝑣 → (𝐻𝑢) = (𝐻‘suc 𝑣))
33 fveq2 6229 . . . . . . . 8 (𝑢 = suc 𝑣 → (seq𝜔((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴𝑜 (𝐺𝑘)) ·𝑜 (𝐹‘(𝐺𝑘))) +𝑜 𝑧)), ∅)‘𝑢) = (seq𝜔((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴𝑜 (𝐺𝑘)) ·𝑜 (𝐹‘(𝐺𝑘))) +𝑜 𝑧)), ∅)‘suc 𝑣))
3432, 33eqeq12d 2666 . . . . . . 7 (𝑢 = suc 𝑣 → ((𝐻𝑢) = (seq𝜔((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴𝑜 (𝐺𝑘)) ·𝑜 (𝐹‘(𝐺𝑘))) +𝑜 𝑧)), ∅)‘𝑢) ↔ (𝐻‘suc 𝑣) = (seq𝜔((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴𝑜 (𝐺𝑘)) ·𝑜 (𝐹‘(𝐺𝑘))) +𝑜 𝑧)), ∅)‘suc 𝑣)))
3531, 34imbi12d 333 . . . . . 6 (𝑢 = suc 𝑣 → ((𝑢 ⊆ dom 𝐺 → (𝐻𝑢) = (seq𝜔((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴𝑜 (𝐺𝑘)) ·𝑜 (𝐹‘(𝐺𝑘))) +𝑜 𝑧)), ∅)‘𝑢)) ↔ (suc 𝑣 ⊆ dom 𝐺 → (𝐻‘suc 𝑣) = (seq𝜔((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴𝑜 (𝐺𝑘)) ·𝑜 (𝐹‘(𝐺𝑘))) +𝑜 𝑧)), ∅)‘suc 𝑣))))
3635imbi2d 329 . . . . 5 (𝑢 = suc 𝑣 → ((𝜑 → (𝑢 ⊆ dom 𝐺 → (𝐻𝑢) = (seq𝜔((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴𝑜 (𝐺𝑘)) ·𝑜 (𝐹‘(𝐺𝑘))) +𝑜 𝑧)), ∅)‘𝑢))) ↔ (𝜑 → (suc 𝑣 ⊆ dom 𝐺 → (𝐻‘suc 𝑣) = (seq𝜔((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴𝑜 (𝐺𝑘)) ·𝑜 (𝐹‘(𝐺𝑘))) +𝑜 𝑧)), ∅)‘suc 𝑣)))))
37 sseq1 3659 . . . . . . 7 (𝑢 = dom 𝐺 → (𝑢 ⊆ dom 𝐺 ↔ dom 𝐺 ⊆ dom 𝐺))
38 fveq2 6229 . . . . . . . 8 (𝑢 = dom 𝐺 → (𝐻𝑢) = (𝐻‘dom 𝐺))
39 fveq2 6229 . . . . . . . 8 (𝑢 = dom 𝐺 → (seq𝜔((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴𝑜 (𝐺𝑘)) ·𝑜 (𝐹‘(𝐺𝑘))) +𝑜 𝑧)), ∅)‘𝑢) = (seq𝜔((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴𝑜 (𝐺𝑘)) ·𝑜 (𝐹‘(𝐺𝑘))) +𝑜 𝑧)), ∅)‘dom 𝐺))
4038, 39eqeq12d 2666 . . . . . . 7 (𝑢 = dom 𝐺 → ((𝐻𝑢) = (seq𝜔((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴𝑜 (𝐺𝑘)) ·𝑜 (𝐹‘(𝐺𝑘))) +𝑜 𝑧)), ∅)‘𝑢) ↔ (𝐻‘dom 𝐺) = (seq𝜔((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴𝑜 (𝐺𝑘)) ·𝑜 (𝐹‘(𝐺𝑘))) +𝑜 𝑧)), ∅)‘dom 𝐺)))
4137, 40imbi12d 333 . . . . . 6 (𝑢 = dom 𝐺 → ((𝑢 ⊆ dom 𝐺 → (𝐻𝑢) = (seq𝜔((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴𝑜 (𝐺𝑘)) ·𝑜 (𝐹‘(𝐺𝑘))) +𝑜 𝑧)), ∅)‘𝑢)) ↔ (dom 𝐺 ⊆ dom 𝐺 → (𝐻‘dom 𝐺) = (seq𝜔((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴𝑜 (𝐺𝑘)) ·𝑜 (𝐹‘(𝐺𝑘))) +𝑜 𝑧)), ∅)‘dom 𝐺))))
4241imbi2d 329 . . . . 5 (𝑢 = dom 𝐺 → ((𝜑 → (𝑢 ⊆ dom 𝐺 → (𝐻𝑢) = (seq𝜔((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴𝑜 (𝐺𝑘)) ·𝑜 (𝐹‘(𝐺𝑘))) +𝑜 𝑧)), ∅)‘𝑢))) ↔ (𝜑 → (dom 𝐺 ⊆ dom 𝐺 → (𝐻‘dom 𝐺) = (seq𝜔((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴𝑜 (𝐺𝑘)) ·𝑜 (𝐹‘(𝐺𝑘))) +𝑜 𝑧)), ∅)‘dom 𝐺)))))
43 eqid 2651 . . . . . 6 ∅ = ∅
44432a1i 12 . . . . 5 (𝜑 → (∅ ⊆ dom 𝐺 → ∅ = ∅))
45 sssucid 5840 . . . . . . . . . 10 𝑣 ⊆ suc 𝑣
46 sstr 3644 . . . . . . . . . 10 ((𝑣 ⊆ suc 𝑣 ∧ suc 𝑣 ⊆ dom 𝐺) → 𝑣 ⊆ dom 𝐺)
4745, 46mpan 706 . . . . . . . . 9 (suc 𝑣 ⊆ dom 𝐺𝑣 ⊆ dom 𝐺)
4847imim1i 63 . . . . . . . 8 ((𝑣 ⊆ dom 𝐺 → (𝐻𝑣) = (seq𝜔((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴𝑜 (𝐺𝑘)) ·𝑜 (𝐹‘(𝐺𝑘))) +𝑜 𝑧)), ∅)‘𝑣)) → (suc 𝑣 ⊆ dom 𝐺 → (𝐻𝑣) = (seq𝜔((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴𝑜 (𝐺𝑘)) ·𝑜 (𝐹‘(𝐺𝑘))) +𝑜 𝑧)), ∅)‘𝑣)))
49 oveq2 6698 . . . . . . . . . . 11 ((𝐻𝑣) = (seq𝜔((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴𝑜 (𝐺𝑘)) ·𝑜 (𝐹‘(𝐺𝑘))) +𝑜 𝑧)), ∅)‘𝑣) → (𝑣(𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴𝑜 (𝐺𝑘)) ·𝑜 (𝐹‘(𝐺𝑘))) +𝑜 𝑧))(𝐻𝑣)) = (𝑣(𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴𝑜 (𝐺𝑘)) ·𝑜 (𝐹‘(𝐺𝑘))) +𝑜 𝑧))(seq𝜔((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴𝑜 (𝐺𝑘)) ·𝑜 (𝐹‘(𝐺𝑘))) +𝑜 𝑧)), ∅)‘𝑣)))
506seqomsuc 7597 . . . . . . . . . . . . 13 (𝑣 ∈ ω → (𝐻‘suc 𝑣) = (𝑣(𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴𝑜 (𝐺𝑘)) ·𝑜 (𝐹‘(𝐺𝑘))) +𝑜 𝑧))(𝐻𝑣)))
5150ad2antrl 764 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑣 ∈ ω ∧ suc 𝑣 ⊆ dom 𝐺)) → (𝐻‘suc 𝑣) = (𝑣(𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴𝑜 (𝐺𝑘)) ·𝑜 (𝐹‘(𝐺𝑘))) +𝑜 𝑧))(𝐻𝑣)))
5218seqomsuc 7597 . . . . . . . . . . . . . 14 (𝑣 ∈ ω → (seq𝜔((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴𝑜 (𝐺𝑘)) ·𝑜 (𝐹‘(𝐺𝑘))) +𝑜 𝑧)), ∅)‘suc 𝑣) = (𝑣(𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴𝑜 (𝐺𝑘)) ·𝑜 (𝐹‘(𝐺𝑘))) +𝑜 𝑧))(seq𝜔((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴𝑜 (𝐺𝑘)) ·𝑜 (𝐹‘(𝐺𝑘))) +𝑜 𝑧)), ∅)‘𝑣)))
5352ad2antrl 764 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑣 ∈ ω ∧ suc 𝑣 ⊆ dom 𝐺)) → (seq𝜔((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴𝑜 (𝐺𝑘)) ·𝑜 (𝐹‘(𝐺𝑘))) +𝑜 𝑧)), ∅)‘suc 𝑣) = (𝑣(𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴𝑜 (𝐺𝑘)) ·𝑜 (𝐹‘(𝐺𝑘))) +𝑜 𝑧))(seq𝜔((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴𝑜 (𝐺𝑘)) ·𝑜 (𝐹‘(𝐺𝑘))) +𝑜 𝑧)), ∅)‘𝑣)))
54 ssv 3658 . . . . . . . . . . . . . . . 16 dom 𝐺 ⊆ V
55 ssv 3658 . . . . . . . . . . . . . . . 16 On ⊆ V
56 resmpt2 6800 . . . . . . . . . . . . . . . 16 ((dom 𝐺 ⊆ V ∧ On ⊆ V) → ((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴𝑜 (𝐺𝑘)) ·𝑜 (𝐹‘(𝐺𝑘))) +𝑜 𝑧)) ↾ (dom 𝐺 × On)) = (𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴𝑜 (𝐺𝑘)) ·𝑜 (𝐹‘(𝐺𝑘))) +𝑜 𝑧)))
5754, 55, 56mp2an 708 . . . . . . . . . . . . . . 15 ((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴𝑜 (𝐺𝑘)) ·𝑜 (𝐹‘(𝐺𝑘))) +𝑜 𝑧)) ↾ (dom 𝐺 × On)) = (𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴𝑜 (𝐺𝑘)) ·𝑜 (𝐹‘(𝐺𝑘))) +𝑜 𝑧))
5857oveqi 6703 . . . . . . . . . . . . . 14 (𝑣((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴𝑜 (𝐺𝑘)) ·𝑜 (𝐹‘(𝐺𝑘))) +𝑜 𝑧)) ↾ (dom 𝐺 × On))(seq𝜔((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴𝑜 (𝐺𝑘)) ·𝑜 (𝐹‘(𝐺𝑘))) +𝑜 𝑧)), ∅)‘𝑣)) = (𝑣(𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴𝑜 (𝐺𝑘)) ·𝑜 (𝐹‘(𝐺𝑘))) +𝑜 𝑧))(seq𝜔((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴𝑜 (𝐺𝑘)) ·𝑜 (𝐹‘(𝐺𝑘))) +𝑜 𝑧)), ∅)‘𝑣))
59 simprr 811 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑣 ∈ ω ∧ suc 𝑣 ⊆ dom 𝐺)) → suc 𝑣 ⊆ dom 𝐺)
60 vex 3234 . . . . . . . . . . . . . . . . . 18 𝑣 ∈ V
6160sucid 5842 . . . . . . . . . . . . . . . . 17 𝑣 ∈ suc 𝑣
6261a1i 11 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑣 ∈ ω ∧ suc 𝑣 ⊆ dom 𝐺)) → 𝑣 ∈ suc 𝑣)
6359, 62sseldd 3637 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑣 ∈ ω ∧ suc 𝑣 ⊆ dom 𝐺)) → 𝑣 ∈ dom 𝐺)
6418cantnfvalf 8600 . . . . . . . . . . . . . . . . 17 seq𝜔((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴𝑜 (𝐺𝑘)) ·𝑜 (𝐹‘(𝐺𝑘))) +𝑜 𝑧)), ∅):ω⟶On
6564ffvelrni 6398 . . . . . . . . . . . . . . . 16 (𝑣 ∈ ω → (seq𝜔((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴𝑜 (𝐺𝑘)) ·𝑜 (𝐹‘(𝐺𝑘))) +𝑜 𝑧)), ∅)‘𝑣) ∈ On)
6665ad2antrl 764 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑣 ∈ ω ∧ suc 𝑣 ⊆ dom 𝐺)) → (seq𝜔((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴𝑜 (𝐺𝑘)) ·𝑜 (𝐹‘(𝐺𝑘))) +𝑜 𝑧)), ∅)‘𝑣) ∈ On)
67 ovres 6842 . . . . . . . . . . . . . . 15 ((𝑣 ∈ dom 𝐺 ∧ (seq𝜔((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴𝑜 (𝐺𝑘)) ·𝑜 (𝐹‘(𝐺𝑘))) +𝑜 𝑧)), ∅)‘𝑣) ∈ On) → (𝑣((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴𝑜 (𝐺𝑘)) ·𝑜 (𝐹‘(𝐺𝑘))) +𝑜 𝑧)) ↾ (dom 𝐺 × On))(seq𝜔((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴𝑜 (𝐺𝑘)) ·𝑜 (𝐹‘(𝐺𝑘))) +𝑜 𝑧)), ∅)‘𝑣)) = (𝑣(𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴𝑜 (𝐺𝑘)) ·𝑜 (𝐹‘(𝐺𝑘))) +𝑜 𝑧))(seq𝜔((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴𝑜 (𝐺𝑘)) ·𝑜 (𝐹‘(𝐺𝑘))) +𝑜 𝑧)), ∅)‘𝑣)))
6863, 66, 67syl2anc 694 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑣 ∈ ω ∧ suc 𝑣 ⊆ dom 𝐺)) → (𝑣((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴𝑜 (𝐺𝑘)) ·𝑜 (𝐹‘(𝐺𝑘))) +𝑜 𝑧)) ↾ (dom 𝐺 × On))(seq𝜔((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴𝑜 (𝐺𝑘)) ·𝑜 (𝐹‘(𝐺𝑘))) +𝑜 𝑧)), ∅)‘𝑣)) = (𝑣(𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴𝑜 (𝐺𝑘)) ·𝑜 (𝐹‘(𝐺𝑘))) +𝑜 𝑧))(seq𝜔((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴𝑜 (𝐺𝑘)) ·𝑜 (𝐹‘(𝐺𝑘))) +𝑜 𝑧)), ∅)‘𝑣)))
6958, 68syl5eqr 2699 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑣 ∈ ω ∧ suc 𝑣 ⊆ dom 𝐺)) → (𝑣(𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴𝑜 (𝐺𝑘)) ·𝑜 (𝐹‘(𝐺𝑘))) +𝑜 𝑧))(seq𝜔((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴𝑜 (𝐺𝑘)) ·𝑜 (𝐹‘(𝐺𝑘))) +𝑜 𝑧)), ∅)‘𝑣)) = (𝑣(𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴𝑜 (𝐺𝑘)) ·𝑜 (𝐹‘(𝐺𝑘))) +𝑜 𝑧))(seq𝜔((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴𝑜 (𝐺𝑘)) ·𝑜 (𝐹‘(𝐺𝑘))) +𝑜 𝑧)), ∅)‘𝑣)))
7053, 69eqtrd 2685 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑣 ∈ ω ∧ suc 𝑣 ⊆ dom 𝐺)) → (seq𝜔((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴𝑜 (𝐺𝑘)) ·𝑜 (𝐹‘(𝐺𝑘))) +𝑜 𝑧)), ∅)‘suc 𝑣) = (𝑣(𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴𝑜 (𝐺𝑘)) ·𝑜 (𝐹‘(𝐺𝑘))) +𝑜 𝑧))(seq𝜔((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴𝑜 (𝐺𝑘)) ·𝑜 (𝐹‘(𝐺𝑘))) +𝑜 𝑧)), ∅)‘𝑣)))
7151, 70eqeq12d 2666 . . . . . . . . . . 11 ((𝜑 ∧ (𝑣 ∈ ω ∧ suc 𝑣 ⊆ dom 𝐺)) → ((𝐻‘suc 𝑣) = (seq𝜔((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴𝑜 (𝐺𝑘)) ·𝑜 (𝐹‘(𝐺𝑘))) +𝑜 𝑧)), ∅)‘suc 𝑣) ↔ (𝑣(𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴𝑜 (𝐺𝑘)) ·𝑜 (𝐹‘(𝐺𝑘))) +𝑜 𝑧))(𝐻𝑣)) = (𝑣(𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴𝑜 (𝐺𝑘)) ·𝑜 (𝐹‘(𝐺𝑘))) +𝑜 𝑧))(seq𝜔((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴𝑜 (𝐺𝑘)) ·𝑜 (𝐹‘(𝐺𝑘))) +𝑜 𝑧)), ∅)‘𝑣))))
7249, 71syl5ibr 236 . . . . . . . . . 10 ((𝜑 ∧ (𝑣 ∈ ω ∧ suc 𝑣 ⊆ dom 𝐺)) → ((𝐻𝑣) = (seq𝜔((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴𝑜 (𝐺𝑘)) ·𝑜 (𝐹‘(𝐺𝑘))) +𝑜 𝑧)), ∅)‘𝑣) → (𝐻‘suc 𝑣) = (seq𝜔((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴𝑜 (𝐺𝑘)) ·𝑜 (𝐹‘(𝐺𝑘))) +𝑜 𝑧)), ∅)‘suc 𝑣)))
7372expr 642 . . . . . . . . 9 ((𝜑𝑣 ∈ ω) → (suc 𝑣 ⊆ dom 𝐺 → ((𝐻𝑣) = (seq𝜔((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴𝑜 (𝐺𝑘)) ·𝑜 (𝐹‘(𝐺𝑘))) +𝑜 𝑧)), ∅)‘𝑣) → (𝐻‘suc 𝑣) = (seq𝜔((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴𝑜 (𝐺𝑘)) ·𝑜 (𝐹‘(𝐺𝑘))) +𝑜 𝑧)), ∅)‘suc 𝑣))))
7473a2d 29 . . . . . . . 8 ((𝜑𝑣 ∈ ω) → ((suc 𝑣 ⊆ dom 𝐺 → (𝐻𝑣) = (seq𝜔((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴𝑜 (𝐺𝑘)) ·𝑜 (𝐹‘(𝐺𝑘))) +𝑜 𝑧)), ∅)‘𝑣)) → (suc 𝑣 ⊆ dom 𝐺 → (𝐻‘suc 𝑣) = (seq𝜔((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴𝑜 (𝐺𝑘)) ·𝑜 (𝐹‘(𝐺𝑘))) +𝑜 𝑧)), ∅)‘suc 𝑣))))
7548, 74syl5 34 . . . . . . 7 ((𝜑𝑣 ∈ ω) → ((𝑣 ⊆ dom 𝐺 → (𝐻𝑣) = (seq𝜔((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴𝑜 (𝐺𝑘)) ·𝑜 (𝐹‘(𝐺𝑘))) +𝑜 𝑧)), ∅)‘𝑣)) → (suc 𝑣 ⊆ dom 𝐺 → (𝐻‘suc 𝑣) = (seq𝜔((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴𝑜 (𝐺𝑘)) ·𝑜 (𝐹‘(𝐺𝑘))) +𝑜 𝑧)), ∅)‘suc 𝑣))))
7675expcom 450 . . . . . 6 (𝑣 ∈ ω → (𝜑 → ((𝑣 ⊆ dom 𝐺 → (𝐻𝑣) = (seq𝜔((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴𝑜 (𝐺𝑘)) ·𝑜 (𝐹‘(𝐺𝑘))) +𝑜 𝑧)), ∅)‘𝑣)) → (suc 𝑣 ⊆ dom 𝐺 → (𝐻‘suc 𝑣) = (seq𝜔((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴𝑜 (𝐺𝑘)) ·𝑜 (𝐹‘(𝐺𝑘))) +𝑜 𝑧)), ∅)‘suc 𝑣)))))
7776a2d 29 . . . . 5 (𝑣 ∈ ω → ((𝜑 → (𝑣 ⊆ dom 𝐺 → (𝐻𝑣) = (seq𝜔((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴𝑜 (𝐺𝑘)) ·𝑜 (𝐹‘(𝐺𝑘))) +𝑜 𝑧)), ∅)‘𝑣))) → (𝜑 → (suc 𝑣 ⊆ dom 𝐺 → (𝐻‘suc 𝑣) = (seq𝜔((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴𝑜 (𝐺𝑘)) ·𝑜 (𝐹‘(𝐺𝑘))) +𝑜 𝑧)), ∅)‘suc 𝑣)))))
7824, 30, 36, 42, 44, 77finds 7134 . . . 4 (dom 𝐺 ∈ ω → (𝜑 → (dom 𝐺 ⊆ dom 𝐺 → (𝐻‘dom 𝐺) = (seq𝜔((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴𝑜 (𝐺𝑘)) ·𝑜 (𝐹‘(𝐺𝑘))) +𝑜 𝑧)), ∅)‘dom 𝐺))))
7910, 78mpcom 38 . . 3 (𝜑 → (dom 𝐺 ⊆ dom 𝐺 → (𝐻‘dom 𝐺) = (seq𝜔((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴𝑜 (𝐺𝑘)) ·𝑜 (𝐹‘(𝐺𝑘))) +𝑜 𝑧)), ∅)‘dom 𝐺)))
808, 79mpi 20 . 2 (𝜑 → (𝐻‘dom 𝐺) = (seq𝜔((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴𝑜 (𝐺𝑘)) ·𝑜 (𝐹‘(𝐺𝑘))) +𝑜 𝑧)), ∅)‘dom 𝐺))
817, 80eqtrd 2685 1 (𝜑 → ((𝐴 CNF 𝐵)‘𝐹) = (seq𝜔((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴𝑜 (𝐺𝑘)) ·𝑜 (𝐹‘(𝐺𝑘))) +𝑜 𝑧)), ∅)‘dom 𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1523  wcel 2030  Vcvv 3231  wss 3607  c0 3948   E cep 5057   We wwe 5101   × cxp 5141  dom cdm 5143  cres 5145  Oncon0 5761  suc csuc 5763  cfv 5926  (class class class)co 6690  cmpt2 6692  ωcom 7107   supp csupp 7340  seq𝜔cseqom 7587   +𝑜 coa 7602   ·𝑜 comu 7603  𝑜 coe 7604  OrdIsocoi 8455   CNF ccnf 8596
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-fal 1529  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-se 5103  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-isom 5935  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-supp 7341  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-seqom 7588  df-oadd 7609  df-er 7787  df-map 7901  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-fsupp 8317  df-oi 8456  df-cnf 8597
This theorem is referenced by:  cantnfres  8612
  Copyright terms: Public domain W3C validator