![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cantnfs | Structured version Visualization version GIF version |
Description: Elementhood in the set of finitely supported functions from 𝐵 to 𝐴. (Contributed by Mario Carneiro, 25-May-2015.) (Revised by AV, 28-Jun-2019.) |
Ref | Expression |
---|---|
cantnfs.s | ⊢ 𝑆 = dom (𝐴 CNF 𝐵) |
cantnfs.a | ⊢ (𝜑 → 𝐴 ∈ On) |
cantnfs.b | ⊢ (𝜑 → 𝐵 ∈ On) |
Ref | Expression |
---|---|
cantnfs | ⊢ (𝜑 → (𝐹 ∈ 𝑆 ↔ (𝐹:𝐵⟶𝐴 ∧ 𝐹 finSupp ∅))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cantnfs.s | . . . . 5 ⊢ 𝑆 = dom (𝐴 CNF 𝐵) | |
2 | eqid 2651 | . . . . . 6 ⊢ {𝑔 ∈ (𝐴 ↑𝑚 𝐵) ∣ 𝑔 finSupp ∅} = {𝑔 ∈ (𝐴 ↑𝑚 𝐵) ∣ 𝑔 finSupp ∅} | |
3 | cantnfs.a | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ On) | |
4 | cantnfs.b | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ On) | |
5 | 2, 3, 4 | cantnfdm 8599 | . . . . 5 ⊢ (𝜑 → dom (𝐴 CNF 𝐵) = {𝑔 ∈ (𝐴 ↑𝑚 𝐵) ∣ 𝑔 finSupp ∅}) |
6 | 1, 5 | syl5eq 2697 | . . . 4 ⊢ (𝜑 → 𝑆 = {𝑔 ∈ (𝐴 ↑𝑚 𝐵) ∣ 𝑔 finSupp ∅}) |
7 | 6 | eleq2d 2716 | . . 3 ⊢ (𝜑 → (𝐹 ∈ 𝑆 ↔ 𝐹 ∈ {𝑔 ∈ (𝐴 ↑𝑚 𝐵) ∣ 𝑔 finSupp ∅})) |
8 | breq1 4688 | . . . 4 ⊢ (𝑔 = 𝐹 → (𝑔 finSupp ∅ ↔ 𝐹 finSupp ∅)) | |
9 | 8 | elrab 3396 | . . 3 ⊢ (𝐹 ∈ {𝑔 ∈ (𝐴 ↑𝑚 𝐵) ∣ 𝑔 finSupp ∅} ↔ (𝐹 ∈ (𝐴 ↑𝑚 𝐵) ∧ 𝐹 finSupp ∅)) |
10 | 7, 9 | syl6bb 276 | . 2 ⊢ (𝜑 → (𝐹 ∈ 𝑆 ↔ (𝐹 ∈ (𝐴 ↑𝑚 𝐵) ∧ 𝐹 finSupp ∅))) |
11 | 3, 4 | elmapd 7913 | . . 3 ⊢ (𝜑 → (𝐹 ∈ (𝐴 ↑𝑚 𝐵) ↔ 𝐹:𝐵⟶𝐴)) |
12 | 11 | anbi1d 741 | . 2 ⊢ (𝜑 → ((𝐹 ∈ (𝐴 ↑𝑚 𝐵) ∧ 𝐹 finSupp ∅) ↔ (𝐹:𝐵⟶𝐴 ∧ 𝐹 finSupp ∅))) |
13 | 10, 12 | bitrd 268 | 1 ⊢ (𝜑 → (𝐹 ∈ 𝑆 ↔ (𝐹:𝐵⟶𝐴 ∧ 𝐹 finSupp ∅))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 = wceq 1523 ∈ wcel 2030 {crab 2945 ∅c0 3948 class class class wbr 4685 dom cdm 5143 Oncon0 5761 ⟶wf 5922 (class class class)co 6690 ↑𝑚 cmap 7899 finSupp cfsupp 8316 CNF ccnf 8596 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-rep 4804 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-fal 1529 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-ral 2946 df-rex 2947 df-reu 2948 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-op 4217 df-uni 4469 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-id 5053 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-pred 5718 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-wrecs 7452 df-recs 7513 df-rdg 7551 df-seqom 7588 df-map 7901 df-cnf 8597 |
This theorem is referenced by: cantnfcl 8602 cantnfle 8606 cantnflt 8607 cantnff 8609 cantnf0 8610 cantnfrescl 8611 cantnfp1lem1 8613 cantnfp1lem2 8614 cantnfp1lem3 8615 cantnfp1 8616 oemapvali 8619 cantnflem1a 8620 cantnflem1b 8621 cantnflem1c 8622 cantnflem1d 8623 cantnflem1 8624 cantnflem3 8626 cantnf 8628 cnfcomlem 8634 cnfcom 8635 cnfcom2lem 8636 cnfcom3lem 8638 cnfcom3 8639 |
Copyright terms: Public domain | W3C validator |