MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cantnfp1lem1 Structured version   Visualization version   GIF version

Theorem cantnfp1lem1 8748
Description: Lemma for cantnfp1 8751. (Contributed by Mario Carneiro, 20-Jun-2015.) (Revised by AV, 30-Jun-2019.)
Hypotheses
Ref Expression
cantnfs.s 𝑆 = dom (𝐴 CNF 𝐵)
cantnfs.a (𝜑𝐴 ∈ On)
cantnfs.b (𝜑𝐵 ∈ On)
cantnfp1.g (𝜑𝐺𝑆)
cantnfp1.x (𝜑𝑋𝐵)
cantnfp1.y (𝜑𝑌𝐴)
cantnfp1.s (𝜑 → (𝐺 supp ∅) ⊆ 𝑋)
cantnfp1.f 𝐹 = (𝑡𝐵 ↦ if(𝑡 = 𝑋, 𝑌, (𝐺𝑡)))
Assertion
Ref Expression
cantnfp1lem1 (𝜑𝐹𝑆)
Distinct variable groups:   𝑡,𝐵   𝑡,𝐴   𝑡,𝑆   𝑡,𝐺   𝜑,𝑡   𝑡,𝑌   𝑡,𝑋
Allowed substitution hint:   𝐹(𝑡)

Proof of Theorem cantnfp1lem1
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 cantnfp1.y . . . . 5 (𝜑𝑌𝐴)
21adantr 472 . . . 4 ((𝜑𝑡𝐵) → 𝑌𝐴)
3 cantnfp1.g . . . . . . 7 (𝜑𝐺𝑆)
4 cantnfs.s . . . . . . . 8 𝑆 = dom (𝐴 CNF 𝐵)
5 cantnfs.a . . . . . . . 8 (𝜑𝐴 ∈ On)
6 cantnfs.b . . . . . . . 8 (𝜑𝐵 ∈ On)
74, 5, 6cantnfs 8736 . . . . . . 7 (𝜑 → (𝐺𝑆 ↔ (𝐺:𝐵𝐴𝐺 finSupp ∅)))
83, 7mpbid 222 . . . . . 6 (𝜑 → (𝐺:𝐵𝐴𝐺 finSupp ∅))
98simpld 477 . . . . 5 (𝜑𝐺:𝐵𝐴)
109ffvelrnda 6522 . . . 4 ((𝜑𝑡𝐵) → (𝐺𝑡) ∈ 𝐴)
112, 10ifcld 4275 . . 3 ((𝜑𝑡𝐵) → if(𝑡 = 𝑋, 𝑌, (𝐺𝑡)) ∈ 𝐴)
12 cantnfp1.f . . 3 𝐹 = (𝑡𝐵 ↦ if(𝑡 = 𝑋, 𝑌, (𝐺𝑡)))
1311, 12fmptd 6548 . 2 (𝜑𝐹:𝐵𝐴)
148simprd 482 . . . . . 6 (𝜑𝐺 finSupp ∅)
1514fsuppimpd 8447 . . . . 5 (𝜑 → (𝐺 supp ∅) ∈ Fin)
16 snfi 8203 . . . . 5 {𝑋} ∈ Fin
17 unfi 8392 . . . . 5 (((𝐺 supp ∅) ∈ Fin ∧ {𝑋} ∈ Fin) → ((𝐺 supp ∅) ∪ {𝑋}) ∈ Fin)
1815, 16, 17sylancl 697 . . . 4 (𝜑 → ((𝐺 supp ∅) ∪ {𝑋}) ∈ Fin)
19 eldifi 3875 . . . . . . . 8 (𝑘 ∈ (𝐵 ∖ ((𝐺 supp ∅) ∪ {𝑋})) → 𝑘𝐵)
2019adantl 473 . . . . . . 7 ((𝜑𝑘 ∈ (𝐵 ∖ ((𝐺 supp ∅) ∪ {𝑋}))) → 𝑘𝐵)
211adantr 472 . . . . . . . 8 ((𝜑𝑘 ∈ (𝐵 ∖ ((𝐺 supp ∅) ∪ {𝑋}))) → 𝑌𝐴)
22 fvex 6362 . . . . . . . 8 (𝐺𝑘) ∈ V
23 ifexg 4301 . . . . . . . 8 ((𝑌𝐴 ∧ (𝐺𝑘) ∈ V) → if(𝑘 = 𝑋, 𝑌, (𝐺𝑘)) ∈ V)
2421, 22, 23sylancl 697 . . . . . . 7 ((𝜑𝑘 ∈ (𝐵 ∖ ((𝐺 supp ∅) ∪ {𝑋}))) → if(𝑘 = 𝑋, 𝑌, (𝐺𝑘)) ∈ V)
25 eqeq1 2764 . . . . . . . . 9 (𝑡 = 𝑘 → (𝑡 = 𝑋𝑘 = 𝑋))
26 fveq2 6352 . . . . . . . . 9 (𝑡 = 𝑘 → (𝐺𝑡) = (𝐺𝑘))
2725, 26ifbieq2d 4255 . . . . . . . 8 (𝑡 = 𝑘 → if(𝑡 = 𝑋, 𝑌, (𝐺𝑡)) = if(𝑘 = 𝑋, 𝑌, (𝐺𝑘)))
2827, 12fvmptg 6442 . . . . . . 7 ((𝑘𝐵 ∧ if(𝑘 = 𝑋, 𝑌, (𝐺𝑘)) ∈ V) → (𝐹𝑘) = if(𝑘 = 𝑋, 𝑌, (𝐺𝑘)))
2920, 24, 28syl2anc 696 . . . . . 6 ((𝜑𝑘 ∈ (𝐵 ∖ ((𝐺 supp ∅) ∪ {𝑋}))) → (𝐹𝑘) = if(𝑘 = 𝑋, 𝑌, (𝐺𝑘)))
30 eldifn 3876 . . . . . . . . 9 (𝑘 ∈ (𝐵 ∖ ((𝐺 supp ∅) ∪ {𝑋})) → ¬ 𝑘 ∈ ((𝐺 supp ∅) ∪ {𝑋}))
3130adantl 473 . . . . . . . 8 ((𝜑𝑘 ∈ (𝐵 ∖ ((𝐺 supp ∅) ∪ {𝑋}))) → ¬ 𝑘 ∈ ((𝐺 supp ∅) ∪ {𝑋}))
32 velsn 4337 . . . . . . . . 9 (𝑘 ∈ {𝑋} ↔ 𝑘 = 𝑋)
33 elun2 3924 . . . . . . . . 9 (𝑘 ∈ {𝑋} → 𝑘 ∈ ((𝐺 supp ∅) ∪ {𝑋}))
3432, 33sylbir 225 . . . . . . . 8 (𝑘 = 𝑋𝑘 ∈ ((𝐺 supp ∅) ∪ {𝑋}))
3531, 34nsyl 135 . . . . . . 7 ((𝜑𝑘 ∈ (𝐵 ∖ ((𝐺 supp ∅) ∪ {𝑋}))) → ¬ 𝑘 = 𝑋)
3635iffalsed 4241 . . . . . 6 ((𝜑𝑘 ∈ (𝐵 ∖ ((𝐺 supp ∅) ∪ {𝑋}))) → if(𝑘 = 𝑋, 𝑌, (𝐺𝑘)) = (𝐺𝑘))
37 ssun1 3919 . . . . . . . . 9 (𝐺 supp ∅) ⊆ ((𝐺 supp ∅) ∪ {𝑋})
38 sscon 3887 . . . . . . . . 9 ((𝐺 supp ∅) ⊆ ((𝐺 supp ∅) ∪ {𝑋}) → (𝐵 ∖ ((𝐺 supp ∅) ∪ {𝑋})) ⊆ (𝐵 ∖ (𝐺 supp ∅)))
3937, 38ax-mp 5 . . . . . . . 8 (𝐵 ∖ ((𝐺 supp ∅) ∪ {𝑋})) ⊆ (𝐵 ∖ (𝐺 supp ∅))
4039sseli 3740 . . . . . . 7 (𝑘 ∈ (𝐵 ∖ ((𝐺 supp ∅) ∪ {𝑋})) → 𝑘 ∈ (𝐵 ∖ (𝐺 supp ∅)))
41 eqid 2760 . . . . . . . . 9 (𝐺 supp ∅) = (𝐺 supp ∅)
42 eqimss2 3799 . . . . . . . . 9 ((𝐺 supp ∅) = (𝐺 supp ∅) → (𝐺 supp ∅) ⊆ (𝐺 supp ∅))
4341, 42mp1i 13 . . . . . . . 8 (𝜑 → (𝐺 supp ∅) ⊆ (𝐺 supp ∅))
44 0ex 4942 . . . . . . . . 9 ∅ ∈ V
4544a1i 11 . . . . . . . 8 (𝜑 → ∅ ∈ V)
469, 43, 6, 45suppssr 7495 . . . . . . 7 ((𝜑𝑘 ∈ (𝐵 ∖ (𝐺 supp ∅))) → (𝐺𝑘) = ∅)
4740, 46sylan2 492 . . . . . 6 ((𝜑𝑘 ∈ (𝐵 ∖ ((𝐺 supp ∅) ∪ {𝑋}))) → (𝐺𝑘) = ∅)
4829, 36, 473eqtrd 2798 . . . . 5 ((𝜑𝑘 ∈ (𝐵 ∖ ((𝐺 supp ∅) ∪ {𝑋}))) → (𝐹𝑘) = ∅)
4913, 48suppss 7494 . . . 4 (𝜑 → (𝐹 supp ∅) ⊆ ((𝐺 supp ∅) ∪ {𝑋}))
50 ssfi 8345 . . . 4 ((((𝐺 supp ∅) ∪ {𝑋}) ∈ Fin ∧ (𝐹 supp ∅) ⊆ ((𝐺 supp ∅) ∪ {𝑋})) → (𝐹 supp ∅) ∈ Fin)
5118, 49, 50syl2anc 696 . . 3 (𝜑 → (𝐹 supp ∅) ∈ Fin)
5212funmpt2 6088 . . . . 5 Fun 𝐹
5352a1i 11 . . . 4 (𝜑 → Fun 𝐹)
54 mptexg 6648 . . . . . 6 (𝐵 ∈ On → (𝑡𝐵 ↦ if(𝑡 = 𝑋, 𝑌, (𝐺𝑡))) ∈ V)
5512, 54syl5eqel 2843 . . . . 5 (𝐵 ∈ On → 𝐹 ∈ V)
566, 55syl 17 . . . 4 (𝜑𝐹 ∈ V)
57 funisfsupp 8445 . . . 4 ((Fun 𝐹𝐹 ∈ V ∧ ∅ ∈ V) → (𝐹 finSupp ∅ ↔ (𝐹 supp ∅) ∈ Fin))
5853, 56, 45, 57syl3anc 1477 . . 3 (𝜑 → (𝐹 finSupp ∅ ↔ (𝐹 supp ∅) ∈ Fin))
5951, 58mpbird 247 . 2 (𝜑𝐹 finSupp ∅)
604, 5, 6cantnfs 8736 . 2 (𝜑 → (𝐹𝑆 ↔ (𝐹:𝐵𝐴𝐹 finSupp ∅)))
6113, 59, 60mpbir2and 995 1 (𝜑𝐹𝑆)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 383   = wceq 1632  wcel 2139  Vcvv 3340  cdif 3712  cun 3713  wss 3715  c0 4058  ifcif 4230  {csn 4321   class class class wbr 4804  cmpt 4881  dom cdm 5266  Oncon0 5884  Fun wfun 6043  wf 6045  cfv 6049  (class class class)co 6813   supp csupp 7463  Fincfn 8121   finSupp cfsupp 8440   CNF ccnf 8731
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-fal 1638  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-ral 3055  df-rex 3056  df-reu 3057  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-om 7231  df-supp 7464  df-wrecs 7576  df-recs 7637  df-rdg 7675  df-seqom 7712  df-1o 7729  df-oadd 7733  df-er 7911  df-map 8025  df-en 8122  df-fin 8125  df-fsupp 8441  df-cnf 8732
This theorem is referenced by:  cantnfp1lem2  8749  cantnfp1lem3  8750  cantnfp1  8751
  Copyright terms: Public domain W3C validator