![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cantnflt2 | Structured version Visualization version GIF version |
Description: An upper bound on the CNF function. (Contributed by Mario Carneiro, 28-May-2015.) (Revised by AV, 29-Jun-2019.) |
Ref | Expression |
---|---|
cantnfs.s | ⊢ 𝑆 = dom (𝐴 CNF 𝐵) |
cantnfs.a | ⊢ (𝜑 → 𝐴 ∈ On) |
cantnfs.b | ⊢ (𝜑 → 𝐵 ∈ On) |
cantnflt2.f | ⊢ (𝜑 → 𝐹 ∈ 𝑆) |
cantnflt2.a | ⊢ (𝜑 → ∅ ∈ 𝐴) |
cantnflt2.c | ⊢ (𝜑 → 𝐶 ∈ On) |
cantnflt2.s | ⊢ (𝜑 → (𝐹 supp ∅) ⊆ 𝐶) |
Ref | Expression |
---|---|
cantnflt2 | ⊢ (𝜑 → ((𝐴 CNF 𝐵)‘𝐹) ∈ (𝐴 ↑𝑜 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cantnfs.s | . . 3 ⊢ 𝑆 = dom (𝐴 CNF 𝐵) | |
2 | cantnfs.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ On) | |
3 | cantnfs.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ On) | |
4 | eqid 2651 | . . 3 ⊢ OrdIso( E , (𝐹 supp ∅)) = OrdIso( E , (𝐹 supp ∅)) | |
5 | cantnflt2.f | . . 3 ⊢ (𝜑 → 𝐹 ∈ 𝑆) | |
6 | eqid 2651 | . . 3 ⊢ seq𝜔((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴 ↑𝑜 (OrdIso( E , (𝐹 supp ∅))‘𝑘)) ·𝑜 (𝐹‘(OrdIso( E , (𝐹 supp ∅))‘𝑘))) +𝑜 𝑧)), ∅) = seq𝜔((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴 ↑𝑜 (OrdIso( E , (𝐹 supp ∅))‘𝑘)) ·𝑜 (𝐹‘(OrdIso( E , (𝐹 supp ∅))‘𝑘))) +𝑜 𝑧)), ∅) | |
7 | 1, 2, 3, 4, 5, 6 | cantnfval 8603 | . 2 ⊢ (𝜑 → ((𝐴 CNF 𝐵)‘𝐹) = (seq𝜔((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴 ↑𝑜 (OrdIso( E , (𝐹 supp ∅))‘𝑘)) ·𝑜 (𝐹‘(OrdIso( E , (𝐹 supp ∅))‘𝑘))) +𝑜 𝑧)), ∅)‘dom OrdIso( E , (𝐹 supp ∅)))) |
8 | cantnflt2.a | . . 3 ⊢ (𝜑 → ∅ ∈ 𝐴) | |
9 | cantnflt2.c | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ On) | |
10 | cantnflt2.s | . . . . 5 ⊢ (𝜑 → (𝐹 supp ∅) ⊆ 𝐶) | |
11 | 9, 10 | ssexd 4838 | . . . 4 ⊢ (𝜑 → (𝐹 supp ∅) ∈ V) |
12 | 4 | oion 8482 | . . . 4 ⊢ ((𝐹 supp ∅) ∈ V → dom OrdIso( E , (𝐹 supp ∅)) ∈ On) |
13 | sucidg 5841 | . . . 4 ⊢ (dom OrdIso( E , (𝐹 supp ∅)) ∈ On → dom OrdIso( E , (𝐹 supp ∅)) ∈ suc dom OrdIso( E , (𝐹 supp ∅))) | |
14 | 11, 12, 13 | 3syl 18 | . . 3 ⊢ (𝜑 → dom OrdIso( E , (𝐹 supp ∅)) ∈ suc dom OrdIso( E , (𝐹 supp ∅))) |
15 | 1, 2, 3, 4, 5 | cantnfcl 8602 | . . . . . . 7 ⊢ (𝜑 → ( E We (𝐹 supp ∅) ∧ dom OrdIso( E , (𝐹 supp ∅)) ∈ ω)) |
16 | 15 | simpld 474 | . . . . . 6 ⊢ (𝜑 → E We (𝐹 supp ∅)) |
17 | 4 | oiiso 8483 | . . . . . 6 ⊢ (((𝐹 supp ∅) ∈ V ∧ E We (𝐹 supp ∅)) → OrdIso( E , (𝐹 supp ∅)) Isom E , E (dom OrdIso( E , (𝐹 supp ∅)), (𝐹 supp ∅))) |
18 | 11, 16, 17 | syl2anc 694 | . . . . 5 ⊢ (𝜑 → OrdIso( E , (𝐹 supp ∅)) Isom E , E (dom OrdIso( E , (𝐹 supp ∅)), (𝐹 supp ∅))) |
19 | isof1o 6613 | . . . . 5 ⊢ (OrdIso( E , (𝐹 supp ∅)) Isom E , E (dom OrdIso( E , (𝐹 supp ∅)), (𝐹 supp ∅)) → OrdIso( E , (𝐹 supp ∅)):dom OrdIso( E , (𝐹 supp ∅))–1-1-onto→(𝐹 supp ∅)) | |
20 | f1ofo 6182 | . . . . 5 ⊢ (OrdIso( E , (𝐹 supp ∅)):dom OrdIso( E , (𝐹 supp ∅))–1-1-onto→(𝐹 supp ∅) → OrdIso( E , (𝐹 supp ∅)):dom OrdIso( E , (𝐹 supp ∅))–onto→(𝐹 supp ∅)) | |
21 | foima 6158 | . . . . 5 ⊢ (OrdIso( E , (𝐹 supp ∅)):dom OrdIso( E , (𝐹 supp ∅))–onto→(𝐹 supp ∅) → (OrdIso( E , (𝐹 supp ∅)) “ dom OrdIso( E , (𝐹 supp ∅))) = (𝐹 supp ∅)) | |
22 | 18, 19, 20, 21 | 4syl 19 | . . . 4 ⊢ (𝜑 → (OrdIso( E , (𝐹 supp ∅)) “ dom OrdIso( E , (𝐹 supp ∅))) = (𝐹 supp ∅)) |
23 | 22, 10 | eqsstrd 3672 | . . 3 ⊢ (𝜑 → (OrdIso( E , (𝐹 supp ∅)) “ dom OrdIso( E , (𝐹 supp ∅))) ⊆ 𝐶) |
24 | 1, 2, 3, 4, 5, 6, 8, 14, 9, 23 | cantnflt 8607 | . 2 ⊢ (𝜑 → (seq𝜔((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴 ↑𝑜 (OrdIso( E , (𝐹 supp ∅))‘𝑘)) ·𝑜 (𝐹‘(OrdIso( E , (𝐹 supp ∅))‘𝑘))) +𝑜 𝑧)), ∅)‘dom OrdIso( E , (𝐹 supp ∅))) ∈ (𝐴 ↑𝑜 𝐶)) |
25 | 7, 24 | eqeltrd 2730 | 1 ⊢ (𝜑 → ((𝐴 CNF 𝐵)‘𝐹) ∈ (𝐴 ↑𝑜 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1523 ∈ wcel 2030 Vcvv 3231 ⊆ wss 3607 ∅c0 3948 E cep 5057 We wwe 5101 dom cdm 5143 “ cima 5146 Oncon0 5761 suc csuc 5763 –onto→wfo 5924 –1-1-onto→wf1o 5925 ‘cfv 5926 Isom wiso 5927 (class class class)co 6690 ↦ cmpt2 6692 ωcom 7107 supp csupp 7340 seq𝜔cseqom 7587 +𝑜 coa 7602 ·𝑜 comu 7603 ↑𝑜 coe 7604 OrdIsocoi 8455 CNF ccnf 8596 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-rep 4804 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-fal 1529 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-ral 2946 df-rex 2947 df-reu 2948 df-rmo 2949 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-se 5103 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-pred 5718 df-ord 5764 df-on 5765 df-lim 5766 df-suc 5767 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-isom 5935 df-riota 6651 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-om 7108 df-1st 7210 df-2nd 7211 df-supp 7341 df-wrecs 7452 df-recs 7513 df-rdg 7551 df-seqom 7588 df-1o 7605 df-2o 7606 df-oadd 7609 df-omul 7610 df-oexp 7611 df-er 7787 df-map 7901 df-en 7998 df-dom 7999 df-sdom 8000 df-fin 8001 df-fsupp 8317 df-oi 8456 df-cnf 8597 |
This theorem is referenced by: cantnff 8609 cantnflem1d 8623 cnfcom3lem 8638 |
Copyright terms: Public domain | W3C validator |