![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cantnflem2 | Structured version Visualization version GIF version |
Description: Lemma for cantnf 8628. (Contributed by Mario Carneiro, 28-May-2015.) |
Ref | Expression |
---|---|
cantnfs.s | ⊢ 𝑆 = dom (𝐴 CNF 𝐵) |
cantnfs.a | ⊢ (𝜑 → 𝐴 ∈ On) |
cantnfs.b | ⊢ (𝜑 → 𝐵 ∈ On) |
oemapval.t | ⊢ 𝑇 = {〈𝑥, 𝑦〉 ∣ ∃𝑧 ∈ 𝐵 ((𝑥‘𝑧) ∈ (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐵 (𝑧 ∈ 𝑤 → (𝑥‘𝑤) = (𝑦‘𝑤)))} |
cantnf.c | ⊢ (𝜑 → 𝐶 ∈ (𝐴 ↑𝑜 𝐵)) |
cantnf.s | ⊢ (𝜑 → 𝐶 ⊆ ran (𝐴 CNF 𝐵)) |
cantnf.e | ⊢ (𝜑 → ∅ ∈ 𝐶) |
Ref | Expression |
---|---|
cantnflem2 | ⊢ (𝜑 → (𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐶 ∈ (On ∖ 1𝑜))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cantnfs.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ On) | |
2 | cantnfs.b | . . . . . . . . . 10 ⊢ (𝜑 → 𝐵 ∈ On) | |
3 | oecl 7662 | . . . . . . . . . 10 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ↑𝑜 𝐵) ∈ On) | |
4 | 1, 2, 3 | syl2anc 694 | . . . . . . . . 9 ⊢ (𝜑 → (𝐴 ↑𝑜 𝐵) ∈ On) |
5 | cantnf.c | . . . . . . . . 9 ⊢ (𝜑 → 𝐶 ∈ (𝐴 ↑𝑜 𝐵)) | |
6 | onelon 5786 | . . . . . . . . 9 ⊢ (((𝐴 ↑𝑜 𝐵) ∈ On ∧ 𝐶 ∈ (𝐴 ↑𝑜 𝐵)) → 𝐶 ∈ On) | |
7 | 4, 5, 6 | syl2anc 694 | . . . . . . . 8 ⊢ (𝜑 → 𝐶 ∈ On) |
8 | cantnf.e | . . . . . . . 8 ⊢ (𝜑 → ∅ ∈ 𝐶) | |
9 | ondif1 7626 | . . . . . . . 8 ⊢ (𝐶 ∈ (On ∖ 1𝑜) ↔ (𝐶 ∈ On ∧ ∅ ∈ 𝐶)) | |
10 | 7, 8, 9 | sylanbrc 699 | . . . . . . 7 ⊢ (𝜑 → 𝐶 ∈ (On ∖ 1𝑜)) |
11 | 10 | eldifbd 3620 | . . . . . 6 ⊢ (𝜑 → ¬ 𝐶 ∈ 1𝑜) |
12 | ssel 3630 | . . . . . . 7 ⊢ ((𝐴 ↑𝑜 𝐵) ⊆ 1𝑜 → (𝐶 ∈ (𝐴 ↑𝑜 𝐵) → 𝐶 ∈ 1𝑜)) | |
13 | 5, 12 | syl5com 31 | . . . . . 6 ⊢ (𝜑 → ((𝐴 ↑𝑜 𝐵) ⊆ 1𝑜 → 𝐶 ∈ 1𝑜)) |
14 | 11, 13 | mtod 189 | . . . . 5 ⊢ (𝜑 → ¬ (𝐴 ↑𝑜 𝐵) ⊆ 1𝑜) |
15 | oe0m 7643 | . . . . . . . . 9 ⊢ (𝐵 ∈ On → (∅ ↑𝑜 𝐵) = (1𝑜 ∖ 𝐵)) | |
16 | 2, 15 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → (∅ ↑𝑜 𝐵) = (1𝑜 ∖ 𝐵)) |
17 | difss 3770 | . . . . . . . 8 ⊢ (1𝑜 ∖ 𝐵) ⊆ 1𝑜 | |
18 | 16, 17 | syl6eqss 3688 | . . . . . . 7 ⊢ (𝜑 → (∅ ↑𝑜 𝐵) ⊆ 1𝑜) |
19 | oveq1 6697 | . . . . . . . 8 ⊢ (𝐴 = ∅ → (𝐴 ↑𝑜 𝐵) = (∅ ↑𝑜 𝐵)) | |
20 | 19 | sseq1d 3665 | . . . . . . 7 ⊢ (𝐴 = ∅ → ((𝐴 ↑𝑜 𝐵) ⊆ 1𝑜 ↔ (∅ ↑𝑜 𝐵) ⊆ 1𝑜)) |
21 | 18, 20 | syl5ibrcom 237 | . . . . . 6 ⊢ (𝜑 → (𝐴 = ∅ → (𝐴 ↑𝑜 𝐵) ⊆ 1𝑜)) |
22 | oe1m 7670 | . . . . . . . 8 ⊢ (𝐵 ∈ On → (1𝑜 ↑𝑜 𝐵) = 1𝑜) | |
23 | eqimss 3690 | . . . . . . . 8 ⊢ ((1𝑜 ↑𝑜 𝐵) = 1𝑜 → (1𝑜 ↑𝑜 𝐵) ⊆ 1𝑜) | |
24 | 2, 22, 23 | 3syl 18 | . . . . . . 7 ⊢ (𝜑 → (1𝑜 ↑𝑜 𝐵) ⊆ 1𝑜) |
25 | oveq1 6697 | . . . . . . . 8 ⊢ (𝐴 = 1𝑜 → (𝐴 ↑𝑜 𝐵) = (1𝑜 ↑𝑜 𝐵)) | |
26 | 25 | sseq1d 3665 | . . . . . . 7 ⊢ (𝐴 = 1𝑜 → ((𝐴 ↑𝑜 𝐵) ⊆ 1𝑜 ↔ (1𝑜 ↑𝑜 𝐵) ⊆ 1𝑜)) |
27 | 24, 26 | syl5ibrcom 237 | . . . . . 6 ⊢ (𝜑 → (𝐴 = 1𝑜 → (𝐴 ↑𝑜 𝐵) ⊆ 1𝑜)) |
28 | 21, 27 | jaod 394 | . . . . 5 ⊢ (𝜑 → ((𝐴 = ∅ ∨ 𝐴 = 1𝑜) → (𝐴 ↑𝑜 𝐵) ⊆ 1𝑜)) |
29 | 14, 28 | mtod 189 | . . . 4 ⊢ (𝜑 → ¬ (𝐴 = ∅ ∨ 𝐴 = 1𝑜)) |
30 | elpri 4230 | . . . . 5 ⊢ (𝐴 ∈ {∅, 1𝑜} → (𝐴 = ∅ ∨ 𝐴 = 1𝑜)) | |
31 | df2o3 7618 | . . . . 5 ⊢ 2𝑜 = {∅, 1𝑜} | |
32 | 30, 31 | eleq2s 2748 | . . . 4 ⊢ (𝐴 ∈ 2𝑜 → (𝐴 = ∅ ∨ 𝐴 = 1𝑜)) |
33 | 29, 32 | nsyl 135 | . . 3 ⊢ (𝜑 → ¬ 𝐴 ∈ 2𝑜) |
34 | 1, 33 | eldifd 3618 | . 2 ⊢ (𝜑 → 𝐴 ∈ (On ∖ 2𝑜)) |
35 | 34, 10 | jca 553 | 1 ⊢ (𝜑 → (𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐶 ∈ (On ∖ 1𝑜))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ wo 382 ∧ wa 383 = wceq 1523 ∈ wcel 2030 ∀wral 2941 ∃wrex 2942 ∖ cdif 3604 ⊆ wss 3607 ∅c0 3948 {cpr 4212 {copab 4745 dom cdm 5143 ran crn 5144 Oncon0 5761 ‘cfv 5926 (class class class)co 6690 1𝑜c1o 7598 2𝑜c2o 7599 ↑𝑜 coe 7604 CNF ccnf 8596 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-rep 4804 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-ral 2946 df-rex 2947 df-reu 2948 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-pred 5718 df-ord 5764 df-on 5765 df-lim 5766 df-suc 5767 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-om 7108 df-wrecs 7452 df-recs 7513 df-rdg 7551 df-1o 7605 df-2o 7606 df-oadd 7609 df-omul 7610 df-oexp 7611 |
This theorem is referenced by: cantnflem3 8626 cantnflem4 8627 |
Copyright terms: Public domain | W3C validator |