MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cantnffval2 Structured version   Visualization version   GIF version

Theorem cantnffval2 8767
Description: An alternate definition of df-cnf 8734 which relies on cantnf 8765. (Note that although the use of 𝑆 seems self-referential, one can use cantnfdm 8736 to eliminate it.) (Contributed by Mario Carneiro, 28-May-2015.)
Hypotheses
Ref Expression
cantnfs.s 𝑆 = dom (𝐴 CNF 𝐵)
cantnfs.a (𝜑𝐴 ∈ On)
cantnfs.b (𝜑𝐵 ∈ On)
oemapval.t 𝑇 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐵 ((𝑥𝑧) ∈ (𝑦𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝑥𝑤) = (𝑦𝑤)))}
Assertion
Ref Expression
cantnffval2 (𝜑 → (𝐴 CNF 𝐵) = OrdIso(𝑇, 𝑆))
Distinct variable groups:   𝑥,𝑤,𝑦,𝑧,𝐵   𝑤,𝐴,𝑥,𝑦,𝑧   𝑥,𝑆,𝑦,𝑧   𝜑,𝑥,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑤)   𝑆(𝑤)   𝑇(𝑥,𝑦,𝑧,𝑤)

Proof of Theorem cantnffval2
StepHypRef Expression
1 cantnfs.s . . . . 5 𝑆 = dom (𝐴 CNF 𝐵)
2 cantnfs.a . . . . 5 (𝜑𝐴 ∈ On)
3 cantnfs.b . . . . 5 (𝜑𝐵 ∈ On)
4 oemapval.t . . . . 5 𝑇 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐵 ((𝑥𝑧) ∈ (𝑦𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝑥𝑤) = (𝑦𝑤)))}
51, 2, 3, 4cantnf 8765 . . . 4 (𝜑 → (𝐴 CNF 𝐵) Isom 𝑇, E (𝑆, (𝐴𝑜 𝐵)))
6 isof1o 6737 . . . 4 ((𝐴 CNF 𝐵) Isom 𝑇, E (𝑆, (𝐴𝑜 𝐵)) → (𝐴 CNF 𝐵):𝑆1-1-onto→(𝐴𝑜 𝐵))
7 f1orel 6302 . . . 4 ((𝐴 CNF 𝐵):𝑆1-1-onto→(𝐴𝑜 𝐵) → Rel (𝐴 CNF 𝐵))
85, 6, 73syl 18 . . 3 (𝜑 → Rel (𝐴 CNF 𝐵))
9 dfrel2 5741 . . 3 (Rel (𝐴 CNF 𝐵) ↔ (𝐴 CNF 𝐵) = (𝐴 CNF 𝐵))
108, 9sylib 208 . 2 (𝜑(𝐴 CNF 𝐵) = (𝐴 CNF 𝐵))
11 oecl 7788 . . . . . . 7 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴𝑜 𝐵) ∈ On)
122, 3, 11syl2anc 696 . . . . . 6 (𝜑 → (𝐴𝑜 𝐵) ∈ On)
13 eloni 5894 . . . . . 6 ((𝐴𝑜 𝐵) ∈ On → Ord (𝐴𝑜 𝐵))
1412, 13syl 17 . . . . 5 (𝜑 → Ord (𝐴𝑜 𝐵))
15 isocnv 6744 . . . . . 6 ((𝐴 CNF 𝐵) Isom 𝑇, E (𝑆, (𝐴𝑜 𝐵)) → (𝐴 CNF 𝐵) Isom E , 𝑇 ((𝐴𝑜 𝐵), 𝑆))
165, 15syl 17 . . . . 5 (𝜑(𝐴 CNF 𝐵) Isom E , 𝑇 ((𝐴𝑜 𝐵), 𝑆))
171, 2, 3, 4oemapwe 8766 . . . . . . 7 (𝜑 → (𝑇 We 𝑆 ∧ dom OrdIso(𝑇, 𝑆) = (𝐴𝑜 𝐵)))
1817simpld 477 . . . . . 6 (𝜑𝑇 We 𝑆)
19 ovex 6842 . . . . . . . . 9 (𝐴 CNF 𝐵) ∈ V
2019dmex 7265 . . . . . . . 8 dom (𝐴 CNF 𝐵) ∈ V
211, 20eqeltri 2835 . . . . . . 7 𝑆 ∈ V
22 exse 5230 . . . . . . 7 (𝑆 ∈ V → 𝑇 Se 𝑆)
2321, 22ax-mp 5 . . . . . 6 𝑇 Se 𝑆
24 eqid 2760 . . . . . . 7 OrdIso(𝑇, 𝑆) = OrdIso(𝑇, 𝑆)
2524oieu 8611 . . . . . 6 ((𝑇 We 𝑆𝑇 Se 𝑆) → ((Ord (𝐴𝑜 𝐵) ∧ (𝐴 CNF 𝐵) Isom E , 𝑇 ((𝐴𝑜 𝐵), 𝑆)) ↔ ((𝐴𝑜 𝐵) = dom OrdIso(𝑇, 𝑆) ∧ (𝐴 CNF 𝐵) = OrdIso(𝑇, 𝑆))))
2618, 23, 25sylancl 697 . . . . 5 (𝜑 → ((Ord (𝐴𝑜 𝐵) ∧ (𝐴 CNF 𝐵) Isom E , 𝑇 ((𝐴𝑜 𝐵), 𝑆)) ↔ ((𝐴𝑜 𝐵) = dom OrdIso(𝑇, 𝑆) ∧ (𝐴 CNF 𝐵) = OrdIso(𝑇, 𝑆))))
2714, 16, 26mpbi2and 994 . . . 4 (𝜑 → ((𝐴𝑜 𝐵) = dom OrdIso(𝑇, 𝑆) ∧ (𝐴 CNF 𝐵) = OrdIso(𝑇, 𝑆)))
2827simprd 482 . . 3 (𝜑(𝐴 CNF 𝐵) = OrdIso(𝑇, 𝑆))
2928cnveqd 5453 . 2 (𝜑(𝐴 CNF 𝐵) = OrdIso(𝑇, 𝑆))
3010, 29eqtr3d 2796 1 (𝜑 → (𝐴 CNF 𝐵) = OrdIso(𝑇, 𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383   = wceq 1632  wcel 2139  wral 3050  wrex 3051  Vcvv 3340  {copab 4864   E cep 5178   Se wse 5223   We wwe 5224  ccnv 5265  dom cdm 5266  Rel wrel 5271  Ord word 5883  Oncon0 5884  1-1-ontowf1o 6048  cfv 6049   Isom wiso 6050  (class class class)co 6814  𝑜 coe 7729  OrdIsocoi 8581   CNF ccnf 8733
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-fal 1638  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-se 5226  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-isom 6058  df-riota 6775  df-ov 6817  df-oprab 6818  df-mpt2 6819  df-om 7232  df-1st 7334  df-2nd 7335  df-supp 7465  df-wrecs 7577  df-recs 7638  df-rdg 7676  df-seqom 7713  df-1o 7730  df-2o 7731  df-oadd 7734  df-omul 7735  df-oexp 7736  df-er 7913  df-map 8027  df-en 8124  df-dom 8125  df-sdom 8126  df-fin 8127  df-fsupp 8443  df-oi 8582  df-cnf 8734
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator