MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cantnffval Structured version   Visualization version   GIF version

Theorem cantnffval 8723
Description: The value of the Cantor normal form function. (Contributed by Mario Carneiro, 25-May-2015.) (Revised by AV, 28-Jun-2019.)
Hypotheses
Ref Expression
cantnffval.s 𝑆 = {𝑔 ∈ (𝐴𝑚 𝐵) ∣ 𝑔 finSupp ∅}
cantnffval.a (𝜑𝐴 ∈ On)
cantnffval.b (𝜑𝐵 ∈ On)
Assertion
Ref Expression
cantnffval (𝜑 → (𝐴 CNF 𝐵) = (𝑓𝑆OrdIso( E , (𝑓 supp ∅)) / (seq𝜔((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴𝑜 (𝑘)) ·𝑜 (𝑓‘(𝑘))) +𝑜 𝑧)), ∅)‘dom )))
Distinct variable groups:   𝑓,𝑔,,𝑘,𝑧,𝐴   𝐵,𝑓,𝑔,,𝑘,𝑧   𝑆,𝑓
Allowed substitution hints:   𝜑(𝑧,𝑓,𝑔,,𝑘)   𝑆(𝑧,𝑔,,𝑘)

Proof of Theorem cantnffval
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cantnffval.a . 2 (𝜑𝐴 ∈ On)
2 cantnffval.b . 2 (𝜑𝐵 ∈ On)
3 oveq12 6801 . . . . . 6 ((𝑥 = 𝐴𝑦 = 𝐵) → (𝑥𝑚 𝑦) = (𝐴𝑚 𝐵))
43rabeqdv 3343 . . . . 5 ((𝑥 = 𝐴𝑦 = 𝐵) → {𝑔 ∈ (𝑥𝑚 𝑦) ∣ 𝑔 finSupp ∅} = {𝑔 ∈ (𝐴𝑚 𝐵) ∣ 𝑔 finSupp ∅})
5 cantnffval.s . . . . 5 𝑆 = {𝑔 ∈ (𝐴𝑚 𝐵) ∣ 𝑔 finSupp ∅}
64, 5syl6eqr 2822 . . . 4 ((𝑥 = 𝐴𝑦 = 𝐵) → {𝑔 ∈ (𝑥𝑚 𝑦) ∣ 𝑔 finSupp ∅} = 𝑆)
7 simp1l 1238 . . . . . . . . . . 11 (((𝑥 = 𝐴𝑦 = 𝐵) ∧ 𝑘 ∈ V ∧ 𝑧 ∈ V) → 𝑥 = 𝐴)
87oveq1d 6807 . . . . . . . . . 10 (((𝑥 = 𝐴𝑦 = 𝐵) ∧ 𝑘 ∈ V ∧ 𝑧 ∈ V) → (𝑥𝑜 (𝑘)) = (𝐴𝑜 (𝑘)))
98oveq1d 6807 . . . . . . . . 9 (((𝑥 = 𝐴𝑦 = 𝐵) ∧ 𝑘 ∈ V ∧ 𝑧 ∈ V) → ((𝑥𝑜 (𝑘)) ·𝑜 (𝑓‘(𝑘))) = ((𝐴𝑜 (𝑘)) ·𝑜 (𝑓‘(𝑘))))
109oveq1d 6807 . . . . . . . 8 (((𝑥 = 𝐴𝑦 = 𝐵) ∧ 𝑘 ∈ V ∧ 𝑧 ∈ V) → (((𝑥𝑜 (𝑘)) ·𝑜 (𝑓‘(𝑘))) +𝑜 𝑧) = (((𝐴𝑜 (𝑘)) ·𝑜 (𝑓‘(𝑘))) +𝑜 𝑧))
1110mpt2eq3dva 6865 . . . . . . 7 ((𝑥 = 𝐴𝑦 = 𝐵) → (𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝑥𝑜 (𝑘)) ·𝑜 (𝑓‘(𝑘))) +𝑜 𝑧)) = (𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴𝑜 (𝑘)) ·𝑜 (𝑓‘(𝑘))) +𝑜 𝑧)))
12 eqid 2770 . . . . . . 7 ∅ = ∅
13 seqomeq12 7701 . . . . . . 7 (((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝑥𝑜 (𝑘)) ·𝑜 (𝑓‘(𝑘))) +𝑜 𝑧)) = (𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴𝑜 (𝑘)) ·𝑜 (𝑓‘(𝑘))) +𝑜 𝑧)) ∧ ∅ = ∅) → seq𝜔((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝑥𝑜 (𝑘)) ·𝑜 (𝑓‘(𝑘))) +𝑜 𝑧)), ∅) = seq𝜔((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴𝑜 (𝑘)) ·𝑜 (𝑓‘(𝑘))) +𝑜 𝑧)), ∅))
1411, 12, 13sylancl 566 . . . . . 6 ((𝑥 = 𝐴𝑦 = 𝐵) → seq𝜔((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝑥𝑜 (𝑘)) ·𝑜 (𝑓‘(𝑘))) +𝑜 𝑧)), ∅) = seq𝜔((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴𝑜 (𝑘)) ·𝑜 (𝑓‘(𝑘))) +𝑜 𝑧)), ∅))
1514fveq1d 6334 . . . . 5 ((𝑥 = 𝐴𝑦 = 𝐵) → (seq𝜔((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝑥𝑜 (𝑘)) ·𝑜 (𝑓‘(𝑘))) +𝑜 𝑧)), ∅)‘dom ) = (seq𝜔((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴𝑜 (𝑘)) ·𝑜 (𝑓‘(𝑘))) +𝑜 𝑧)), ∅)‘dom ))
1615csbeq2dv 4134 . . . 4 ((𝑥 = 𝐴𝑦 = 𝐵) → OrdIso( E , (𝑓 supp ∅)) / (seq𝜔((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝑥𝑜 (𝑘)) ·𝑜 (𝑓‘(𝑘))) +𝑜 𝑧)), ∅)‘dom ) = OrdIso( E , (𝑓 supp ∅)) / (seq𝜔((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴𝑜 (𝑘)) ·𝑜 (𝑓‘(𝑘))) +𝑜 𝑧)), ∅)‘dom ))
176, 16mpteq12dv 4865 . . 3 ((𝑥 = 𝐴𝑦 = 𝐵) → (𝑓 ∈ {𝑔 ∈ (𝑥𝑚 𝑦) ∣ 𝑔 finSupp ∅} ↦ OrdIso( E , (𝑓 supp ∅)) / (seq𝜔((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝑥𝑜 (𝑘)) ·𝑜 (𝑓‘(𝑘))) +𝑜 𝑧)), ∅)‘dom )) = (𝑓𝑆OrdIso( E , (𝑓 supp ∅)) / (seq𝜔((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴𝑜 (𝑘)) ·𝑜 (𝑓‘(𝑘))) +𝑜 𝑧)), ∅)‘dom )))
18 df-cnf 8722 . . 3 CNF = (𝑥 ∈ On, 𝑦 ∈ On ↦ (𝑓 ∈ {𝑔 ∈ (𝑥𝑚 𝑦) ∣ 𝑔 finSupp ∅} ↦ OrdIso( E , (𝑓 supp ∅)) / (seq𝜔((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝑥𝑜 (𝑘)) ·𝑜 (𝑓‘(𝑘))) +𝑜 𝑧)), ∅)‘dom )))
19 ovex 6822 . . . . 5 (𝐴𝑚 𝐵) ∈ V
205, 19rabex2 4945 . . . 4 𝑆 ∈ V
2120mptex 6629 . . 3 (𝑓𝑆OrdIso( E , (𝑓 supp ∅)) / (seq𝜔((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴𝑜 (𝑘)) ·𝑜 (𝑓‘(𝑘))) +𝑜 𝑧)), ∅)‘dom )) ∈ V
2217, 18, 21ovmpt2a 6937 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 CNF 𝐵) = (𝑓𝑆OrdIso( E , (𝑓 supp ∅)) / (seq𝜔((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴𝑜 (𝑘)) ·𝑜 (𝑓‘(𝑘))) +𝑜 𝑧)), ∅)‘dom )))
231, 2, 22syl2anc 565 1 (𝜑 → (𝐴 CNF 𝐵) = (𝑓𝑆OrdIso( E , (𝑓 supp ∅)) / (seq𝜔((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴𝑜 (𝑘)) ·𝑜 (𝑓‘(𝑘))) +𝑜 𝑧)), ∅)‘dom )))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382  w3a 1070   = wceq 1630  wcel 2144  {crab 3064  Vcvv 3349  csb 3680  c0 4061   class class class wbr 4784  cmpt 4861   E cep 5161  dom cdm 5249  Oncon0 5866  cfv 6031  (class class class)co 6792  cmpt2 6794   supp csupp 7445  seq𝜔cseqom 7694   +𝑜 coa 7709   ·𝑜 comu 7710  𝑜 coe 7711  𝑚 cmap 8008   finSupp cfsupp 8430  OrdIsocoi 8569   CNF ccnf 8721
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750  ax-rep 4902  ax-sep 4912  ax-nul 4920  ax-pr 5034
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3an 1072  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2049  df-eu 2621  df-mo 2622  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ne 2943  df-ral 3065  df-rex 3066  df-reu 3067  df-rab 3069  df-v 3351  df-sbc 3586  df-csb 3681  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-nul 4062  df-if 4224  df-sn 4315  df-pr 4317  df-op 4321  df-uni 4573  df-iun 4654  df-br 4785  df-opab 4845  df-mpt 4862  df-id 5157  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-ov 6795  df-oprab 6796  df-mpt2 6797  df-wrecs 7558  df-recs 7620  df-rdg 7658  df-seqom 7695  df-cnf 8722
This theorem is referenced by:  cantnfdm  8724  cantnfval  8728  cantnff  8734
  Copyright terms: Public domain W3C validator