![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cantnfdm | Structured version Visualization version GIF version |
Description: The domain of the Cantor normal form function (in later lemmas we will use dom (𝐴 CNF 𝐵) to abbreviate "the set of finitely supported functions from 𝐵 to 𝐴"). (Contributed by Mario Carneiro, 25-May-2015.) (Revised by AV, 28-Jun-2019.) |
Ref | Expression |
---|---|
cantnffval.s | ⊢ 𝑆 = {𝑔 ∈ (𝐴 ↑𝑚 𝐵) ∣ 𝑔 finSupp ∅} |
cantnffval.a | ⊢ (𝜑 → 𝐴 ∈ On) |
cantnffval.b | ⊢ (𝜑 → 𝐵 ∈ On) |
Ref | Expression |
---|---|
cantnfdm | ⊢ (𝜑 → dom (𝐴 CNF 𝐵) = 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cantnffval.s | . . . 4 ⊢ 𝑆 = {𝑔 ∈ (𝐴 ↑𝑚 𝐵) ∣ 𝑔 finSupp ∅} | |
2 | cantnffval.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ On) | |
3 | cantnffval.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ On) | |
4 | 1, 2, 3 | cantnffval 8733 | . . 3 ⊢ (𝜑 → (𝐴 CNF 𝐵) = (𝑓 ∈ 𝑆 ↦ ⦋OrdIso( E , (𝑓 supp ∅)) / ℎ⦌(seq𝜔((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴 ↑𝑜 (ℎ‘𝑘)) ·𝑜 (𝑓‘(ℎ‘𝑘))) +𝑜 𝑧)), ∅)‘dom ℎ))) |
5 | 4 | dmeqd 5481 | . 2 ⊢ (𝜑 → dom (𝐴 CNF 𝐵) = dom (𝑓 ∈ 𝑆 ↦ ⦋OrdIso( E , (𝑓 supp ∅)) / ℎ⦌(seq𝜔((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴 ↑𝑜 (ℎ‘𝑘)) ·𝑜 (𝑓‘(ℎ‘𝑘))) +𝑜 𝑧)), ∅)‘dom ℎ))) |
6 | fvex 6362 | . . . . 5 ⊢ (seq𝜔((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴 ↑𝑜 (ℎ‘𝑘)) ·𝑜 (𝑓‘(ℎ‘𝑘))) +𝑜 𝑧)), ∅)‘dom ℎ) ∈ V | |
7 | 6 | csbex 4945 | . . . 4 ⊢ ⦋OrdIso( E , (𝑓 supp ∅)) / ℎ⦌(seq𝜔((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴 ↑𝑜 (ℎ‘𝑘)) ·𝑜 (𝑓‘(ℎ‘𝑘))) +𝑜 𝑧)), ∅)‘dom ℎ) ∈ V |
8 | 7 | rgenw 3062 | . . 3 ⊢ ∀𝑓 ∈ 𝑆 ⦋OrdIso( E , (𝑓 supp ∅)) / ℎ⦌(seq𝜔((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴 ↑𝑜 (ℎ‘𝑘)) ·𝑜 (𝑓‘(ℎ‘𝑘))) +𝑜 𝑧)), ∅)‘dom ℎ) ∈ V |
9 | dmmptg 5793 | . . 3 ⊢ (∀𝑓 ∈ 𝑆 ⦋OrdIso( E , (𝑓 supp ∅)) / ℎ⦌(seq𝜔((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴 ↑𝑜 (ℎ‘𝑘)) ·𝑜 (𝑓‘(ℎ‘𝑘))) +𝑜 𝑧)), ∅)‘dom ℎ) ∈ V → dom (𝑓 ∈ 𝑆 ↦ ⦋OrdIso( E , (𝑓 supp ∅)) / ℎ⦌(seq𝜔((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴 ↑𝑜 (ℎ‘𝑘)) ·𝑜 (𝑓‘(ℎ‘𝑘))) +𝑜 𝑧)), ∅)‘dom ℎ)) = 𝑆) | |
10 | 8, 9 | ax-mp 5 | . 2 ⊢ dom (𝑓 ∈ 𝑆 ↦ ⦋OrdIso( E , (𝑓 supp ∅)) / ℎ⦌(seq𝜔((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴 ↑𝑜 (ℎ‘𝑘)) ·𝑜 (𝑓‘(ℎ‘𝑘))) +𝑜 𝑧)), ∅)‘dom ℎ)) = 𝑆 |
11 | 5, 10 | syl6eq 2810 | 1 ⊢ (𝜑 → dom (𝐴 CNF 𝐵) = 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1632 ∈ wcel 2139 ∀wral 3050 {crab 3054 Vcvv 3340 ⦋csb 3674 ∅c0 4058 class class class wbr 4804 ↦ cmpt 4881 E cep 5178 dom cdm 5266 Oncon0 5884 ‘cfv 6049 (class class class)co 6813 ↦ cmpt2 6815 supp csupp 7463 seq𝜔cseqom 7711 +𝑜 coa 7726 ·𝑜 comu 7727 ↑𝑜 coe 7728 ↑𝑚 cmap 8023 finSupp cfsupp 8440 OrdIsocoi 8579 CNF ccnf 8731 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-rep 4923 ax-sep 4933 ax-nul 4941 ax-pr 5055 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-fal 1638 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-ral 3055 df-rex 3056 df-reu 3057 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-sn 4322 df-pr 4324 df-op 4328 df-uni 4589 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-id 5174 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-pred 5841 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-ov 6816 df-oprab 6817 df-mpt2 6818 df-wrecs 7576 df-recs 7637 df-rdg 7675 df-seqom 7712 df-cnf 8732 |
This theorem is referenced by: cantnfs 8736 cantnfval 8738 cantnff 8744 oemapso 8752 wemapwe 8767 oef1o 8768 |
Copyright terms: Public domain | W3C validator |