MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cantnfdm Structured version   Visualization version   GIF version

Theorem cantnfdm 8734
Description: The domain of the Cantor normal form function (in later lemmas we will use dom (𝐴 CNF 𝐵) to abbreviate "the set of finitely supported functions from 𝐵 to 𝐴"). (Contributed by Mario Carneiro, 25-May-2015.) (Revised by AV, 28-Jun-2019.)
Hypotheses
Ref Expression
cantnffval.s 𝑆 = {𝑔 ∈ (𝐴𝑚 𝐵) ∣ 𝑔 finSupp ∅}
cantnffval.a (𝜑𝐴 ∈ On)
cantnffval.b (𝜑𝐵 ∈ On)
Assertion
Ref Expression
cantnfdm (𝜑 → dom (𝐴 CNF 𝐵) = 𝑆)
Distinct variable groups:   𝐴,𝑔   𝐵,𝑔
Allowed substitution hints:   𝜑(𝑔)   𝑆(𝑔)

Proof of Theorem cantnfdm
Dummy variables 𝑓 𝑘 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cantnffval.s . . . 4 𝑆 = {𝑔 ∈ (𝐴𝑚 𝐵) ∣ 𝑔 finSupp ∅}
2 cantnffval.a . . . 4 (𝜑𝐴 ∈ On)
3 cantnffval.b . . . 4 (𝜑𝐵 ∈ On)
41, 2, 3cantnffval 8733 . . 3 (𝜑 → (𝐴 CNF 𝐵) = (𝑓𝑆OrdIso( E , (𝑓 supp ∅)) / (seq𝜔((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴𝑜 (𝑘)) ·𝑜 (𝑓‘(𝑘))) +𝑜 𝑧)), ∅)‘dom )))
54dmeqd 5481 . 2 (𝜑 → dom (𝐴 CNF 𝐵) = dom (𝑓𝑆OrdIso( E , (𝑓 supp ∅)) / (seq𝜔((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴𝑜 (𝑘)) ·𝑜 (𝑓‘(𝑘))) +𝑜 𝑧)), ∅)‘dom )))
6 fvex 6362 . . . . 5 (seq𝜔((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴𝑜 (𝑘)) ·𝑜 (𝑓‘(𝑘))) +𝑜 𝑧)), ∅)‘dom ) ∈ V
76csbex 4945 . . . 4 OrdIso( E , (𝑓 supp ∅)) / (seq𝜔((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴𝑜 (𝑘)) ·𝑜 (𝑓‘(𝑘))) +𝑜 𝑧)), ∅)‘dom ) ∈ V
87rgenw 3062 . . 3 𝑓𝑆 OrdIso( E , (𝑓 supp ∅)) / (seq𝜔((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴𝑜 (𝑘)) ·𝑜 (𝑓‘(𝑘))) +𝑜 𝑧)), ∅)‘dom ) ∈ V
9 dmmptg 5793 . . 3 (∀𝑓𝑆 OrdIso( E , (𝑓 supp ∅)) / (seq𝜔((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴𝑜 (𝑘)) ·𝑜 (𝑓‘(𝑘))) +𝑜 𝑧)), ∅)‘dom ) ∈ V → dom (𝑓𝑆OrdIso( E , (𝑓 supp ∅)) / (seq𝜔((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴𝑜 (𝑘)) ·𝑜 (𝑓‘(𝑘))) +𝑜 𝑧)), ∅)‘dom )) = 𝑆)
108, 9ax-mp 5 . 2 dom (𝑓𝑆OrdIso( E , (𝑓 supp ∅)) / (seq𝜔((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴𝑜 (𝑘)) ·𝑜 (𝑓‘(𝑘))) +𝑜 𝑧)), ∅)‘dom )) = 𝑆
115, 10syl6eq 2810 1 (𝜑 → dom (𝐴 CNF 𝐵) = 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1632  wcel 2139  wral 3050  {crab 3054  Vcvv 3340  csb 3674  c0 4058   class class class wbr 4804  cmpt 4881   E cep 5178  dom cdm 5266  Oncon0 5884  cfv 6049  (class class class)co 6813  cmpt2 6815   supp csupp 7463  seq𝜔cseqom 7711   +𝑜 coa 7726   ·𝑜 comu 7727  𝑜 coe 7728  𝑚 cmap 8023   finSupp cfsupp 8440  OrdIsocoi 8579   CNF ccnf 8731
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pr 5055
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1635  df-fal 1638  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-ral 3055  df-rex 3056  df-reu 3057  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-sn 4322  df-pr 4324  df-op 4328  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-id 5174  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-wrecs 7576  df-recs 7637  df-rdg 7675  df-seqom 7712  df-cnf 8732
This theorem is referenced by:  cantnfs  8736  cantnfval  8738  cantnff  8744  oemapso  8752  wemapwe  8767  oef1o  8768
  Copyright terms: Public domain W3C validator