MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  canthp1lem2 Structured version   Visualization version   GIF version

Theorem canthp1lem2 9513
Description: Lemma for canthp1 9514. (Contributed by Mario Carneiro, 18-May-2015.)
Hypotheses
Ref Expression
canthp1lem2.1 (𝜑 → 1𝑜𝐴)
canthp1lem2.2 (𝜑𝐹:𝒫 𝐴1-1-onto→(𝐴 +𝑐 1𝑜))
canthp1lem2.3 (𝜑𝐺:((𝐴 +𝑐 1𝑜) ∖ {(𝐹𝐴)})–1-1-onto𝐴)
canthp1lem2.4 𝐻 = ((𝐺𝐹) ∘ (𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥)))
canthp1lem2.5 𝑊 = {⟨𝑥, 𝑟⟩ ∣ ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦𝑥 (𝐻‘(𝑟 “ {𝑦})) = 𝑦))}
canthp1lem2.6 𝐵 = dom 𝑊
Assertion
Ref Expression
canthp1lem2 ¬ 𝜑
Distinct variable groups:   𝑥,𝑟,𝑦,𝐴   𝐵,𝑟,𝑥,𝑦   𝐻,𝑟,𝑥,𝑦   𝜑,𝑟,𝑥,𝑦   𝑊,𝑟,𝑥,𝑦
Allowed substitution hints:   𝐹(𝑥,𝑦,𝑟)   𝐺(𝑥,𝑦,𝑟)

Proof of Theorem canthp1lem2
StepHypRef Expression
1 canthp1lem2.1 . . . . . 6 (𝜑 → 1𝑜𝐴)
2 relsdom 8004 . . . . . . 7 Rel ≺
32brrelex2i 5193 . . . . . 6 (1𝑜𝐴𝐴 ∈ V)
41, 3syl 17 . . . . 5 (𝜑𝐴 ∈ V)
5 pwexg 4880 . . . . 5 (𝐴 ∈ V → 𝒫 𝐴 ∈ V)
64, 5syl 17 . . . 4 (𝜑 → 𝒫 𝐴 ∈ V)
7 canthp1lem2.2 . . . 4 (𝜑𝐹:𝒫 𝐴1-1-onto→(𝐴 +𝑐 1𝑜))
8 f1oeng 8016 . . . 4 ((𝒫 𝐴 ∈ V ∧ 𝐹:𝒫 𝐴1-1-onto→(𝐴 +𝑐 1𝑜)) → 𝒫 𝐴 ≈ (𝐴 +𝑐 1𝑜))
96, 7, 8syl2anc 694 . . 3 (𝜑 → 𝒫 𝐴 ≈ (𝐴 +𝑐 1𝑜))
10 ensym 8046 . . 3 (𝒫 𝐴 ≈ (𝐴 +𝑐 1𝑜) → (𝐴 +𝑐 1𝑜) ≈ 𝒫 𝐴)
119, 10syl 17 . 2 (𝜑 → (𝐴 +𝑐 1𝑜) ≈ 𝒫 𝐴)
12 canth2g 8155 . . . . . . . . . . 11 (𝐴 ∈ V → 𝐴 ≺ 𝒫 𝐴)
134, 12syl 17 . . . . . . . . . 10 (𝜑𝐴 ≺ 𝒫 𝐴)
14 sdomen2 8146 . . . . . . . . . . 11 (𝒫 𝐴 ≈ (𝐴 +𝑐 1𝑜) → (𝐴 ≺ 𝒫 𝐴𝐴 ≺ (𝐴 +𝑐 1𝑜)))
159, 14syl 17 . . . . . . . . . 10 (𝜑 → (𝐴 ≺ 𝒫 𝐴𝐴 ≺ (𝐴 +𝑐 1𝑜)))
1613, 15mpbid 222 . . . . . . . . 9 (𝜑𝐴 ≺ (𝐴 +𝑐 1𝑜))
17 sdomnen 8026 . . . . . . . . 9 (𝐴 ≺ (𝐴 +𝑐 1𝑜) → ¬ 𝐴 ≈ (𝐴 +𝑐 1𝑜))
1816, 17syl 17 . . . . . . . 8 (𝜑 → ¬ 𝐴 ≈ (𝐴 +𝑐 1𝑜))
19 omelon 8581 . . . . . . . . . . . 12 ω ∈ On
20 onenon 8813 . . . . . . . . . . . 12 (ω ∈ On → ω ∈ dom card)
2119, 20ax-mp 5 . . . . . . . . . . 11 ω ∈ dom card
22 canthp1lem2.3 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝐺:((𝐴 +𝑐 1𝑜) ∖ {(𝐹𝐴)})–1-1-onto𝐴)
23 dff1o3 6181 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐹:𝒫 𝐴1-1-onto→(𝐴 +𝑐 1𝑜) ↔ (𝐹:𝒫 𝐴onto→(𝐴 +𝑐 1𝑜) ∧ Fun 𝐹))
2423simprbi 479 . . . . . . . . . . . . . . . . . . . . . 22 (𝐹:𝒫 𝐴1-1-onto→(𝐴 +𝑐 1𝑜) → Fun 𝐹)
257, 24syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → Fun 𝐹)
26 f1ofo 6182 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐹:𝒫 𝐴1-1-onto→(𝐴 +𝑐 1𝑜) → 𝐹:𝒫 𝐴onto→(𝐴 +𝑐 1𝑜))
277, 26syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑𝐹:𝒫 𝐴onto→(𝐴 +𝑐 1𝑜))
28 f1ofn 6176 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐹:𝒫 𝐴1-1-onto→(𝐴 +𝑐 1𝑜) → 𝐹 Fn 𝒫 𝐴)
29 fnresdm 6038 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐹 Fn 𝒫 𝐴 → (𝐹 ↾ 𝒫 𝐴) = 𝐹)
30 foeq1 6149 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐹 ↾ 𝒫 𝐴) = 𝐹 → ((𝐹 ↾ 𝒫 𝐴):𝒫 𝐴onto→(𝐴 +𝑐 1𝑜) ↔ 𝐹:𝒫 𝐴onto→(𝐴 +𝑐 1𝑜)))
317, 28, 29, 304syl 19 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → ((𝐹 ↾ 𝒫 𝐴):𝒫 𝐴onto→(𝐴 +𝑐 1𝑜) ↔ 𝐹:𝒫 𝐴onto→(𝐴 +𝑐 1𝑜)))
3227, 31mpbird 247 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝐹 ↾ 𝒫 𝐴):𝒫 𝐴onto→(𝐴 +𝑐 1𝑜))
33 fvex 6239 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐹𝐴) ∈ V
34 f1osng 6215 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐴 ∈ V ∧ (𝐹𝐴) ∈ V) → {⟨𝐴, (𝐹𝐴)⟩}:{𝐴}–1-1-onto→{(𝐹𝐴)})
354, 33, 34sylancl 695 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → {⟨𝐴, (𝐹𝐴)⟩}:{𝐴}–1-1-onto→{(𝐹𝐴)})
367, 28syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑𝐹 Fn 𝒫 𝐴)
37 pwidg 4206 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝐴 ∈ V → 𝐴 ∈ 𝒫 𝐴)
384, 37syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑𝐴 ∈ 𝒫 𝐴)
39 fnressn 6465 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝐹 Fn 𝒫 𝐴𝐴 ∈ 𝒫 𝐴) → (𝐹 ↾ {𝐴}) = {⟨𝐴, (𝐹𝐴)⟩})
4036, 38, 39syl2anc 694 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → (𝐹 ↾ {𝐴}) = {⟨𝐴, (𝐹𝐴)⟩})
41 f1oeq1 6165 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐹 ↾ {𝐴}) = {⟨𝐴, (𝐹𝐴)⟩} → ((𝐹 ↾ {𝐴}):{𝐴}–1-1-onto→{(𝐹𝐴)} ↔ {⟨𝐴, (𝐹𝐴)⟩}:{𝐴}–1-1-onto→{(𝐹𝐴)}))
4240, 41syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → ((𝐹 ↾ {𝐴}):{𝐴}–1-1-onto→{(𝐹𝐴)} ↔ {⟨𝐴, (𝐹𝐴)⟩}:{𝐴}–1-1-onto→{(𝐹𝐴)}))
4335, 42mpbird 247 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝐹 ↾ {𝐴}):{𝐴}–1-1-onto→{(𝐹𝐴)})
44 f1ofo 6182 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐹 ↾ {𝐴}):{𝐴}–1-1-onto→{(𝐹𝐴)} → (𝐹 ↾ {𝐴}):{𝐴}–onto→{(𝐹𝐴)})
4543, 44syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝐹 ↾ {𝐴}):{𝐴}–onto→{(𝐹𝐴)})
46 resdif 6195 . . . . . . . . . . . . . . . . . . . . 21 ((Fun 𝐹 ∧ (𝐹 ↾ 𝒫 𝐴):𝒫 𝐴onto→(𝐴 +𝑐 1𝑜) ∧ (𝐹 ↾ {𝐴}):{𝐴}–onto→{(𝐹𝐴)}) → (𝐹 ↾ (𝒫 𝐴 ∖ {𝐴})):(𝒫 𝐴 ∖ {𝐴})–1-1-onto→((𝐴 +𝑐 1𝑜) ∖ {(𝐹𝐴)}))
4725, 32, 45, 46syl3anc 1366 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝐹 ↾ (𝒫 𝐴 ∖ {𝐴})):(𝒫 𝐴 ∖ {𝐴})–1-1-onto→((𝐴 +𝑐 1𝑜) ∖ {(𝐹𝐴)}))
48 f1oco 6197 . . . . . . . . . . . . . . . . . . . 20 ((𝐺:((𝐴 +𝑐 1𝑜) ∖ {(𝐹𝐴)})–1-1-onto𝐴 ∧ (𝐹 ↾ (𝒫 𝐴 ∖ {𝐴})):(𝒫 𝐴 ∖ {𝐴})–1-1-onto→((𝐴 +𝑐 1𝑜) ∖ {(𝐹𝐴)})) → (𝐺 ∘ (𝐹 ↾ (𝒫 𝐴 ∖ {𝐴}))):(𝒫 𝐴 ∖ {𝐴})–1-1-onto𝐴)
4922, 47, 48syl2anc 694 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝐺 ∘ (𝐹 ↾ (𝒫 𝐴 ∖ {𝐴}))):(𝒫 𝐴 ∖ {𝐴})–1-1-onto𝐴)
50 resco 5677 . . . . . . . . . . . . . . . . . . . 20 ((𝐺𝐹) ↾ (𝒫 𝐴 ∖ {𝐴})) = (𝐺 ∘ (𝐹 ↾ (𝒫 𝐴 ∖ {𝐴})))
51 f1oeq1 6165 . . . . . . . . . . . . . . . . . . . 20 (((𝐺𝐹) ↾ (𝒫 𝐴 ∖ {𝐴})) = (𝐺 ∘ (𝐹 ↾ (𝒫 𝐴 ∖ {𝐴}))) → (((𝐺𝐹) ↾ (𝒫 𝐴 ∖ {𝐴})):(𝒫 𝐴 ∖ {𝐴})–1-1-onto𝐴 ↔ (𝐺 ∘ (𝐹 ↾ (𝒫 𝐴 ∖ {𝐴}))):(𝒫 𝐴 ∖ {𝐴})–1-1-onto𝐴))
5250, 51ax-mp 5 . . . . . . . . . . . . . . . . . . 19 (((𝐺𝐹) ↾ (𝒫 𝐴 ∖ {𝐴})):(𝒫 𝐴 ∖ {𝐴})–1-1-onto𝐴 ↔ (𝐺 ∘ (𝐹 ↾ (𝒫 𝐴 ∖ {𝐴}))):(𝒫 𝐴 ∖ {𝐴})–1-1-onto𝐴)
5349, 52sylibr 224 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((𝐺𝐹) ↾ (𝒫 𝐴 ∖ {𝐴})):(𝒫 𝐴 ∖ {𝐴})–1-1-onto𝐴)
54 f1of 6175 . . . . . . . . . . . . . . . . . 18 (((𝐺𝐹) ↾ (𝒫 𝐴 ∖ {𝐴})):(𝒫 𝐴 ∖ {𝐴})–1-1-onto𝐴 → ((𝐺𝐹) ↾ (𝒫 𝐴 ∖ {𝐴})):(𝒫 𝐴 ∖ {𝐴})⟶𝐴)
5553, 54syl 17 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝐺𝐹) ↾ (𝒫 𝐴 ∖ {𝐴})):(𝒫 𝐴 ∖ {𝐴})⟶𝐴)
56 0elpw 4864 . . . . . . . . . . . . . . . . . . . . 21 ∅ ∈ 𝒫 𝐴
5756a1i 11 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑥 ∈ 𝒫 𝐴) ∧ 𝑥 = 𝐴) → ∅ ∈ 𝒫 𝐴)
58 sdom0 8133 . . . . . . . . . . . . . . . . . . . . . . . 24 ¬ 1𝑜 ≺ ∅
59 breq2 4689 . . . . . . . . . . . . . . . . . . . . . . . 24 (∅ = 𝐴 → (1𝑜 ≺ ∅ ↔ 1𝑜𝐴))
6058, 59mtbii 315 . . . . . . . . . . . . . . . . . . . . . . 23 (∅ = 𝐴 → ¬ 1𝑜𝐴)
6160necon2ai 2852 . . . . . . . . . . . . . . . . . . . . . 22 (1𝑜𝐴 → ∅ ≠ 𝐴)
621, 61syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → ∅ ≠ 𝐴)
6362ad2antrr 762 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑥 ∈ 𝒫 𝐴) ∧ 𝑥 = 𝐴) → ∅ ≠ 𝐴)
64 eldifsn 4350 . . . . . . . . . . . . . . . . . . . 20 (∅ ∈ (𝒫 𝐴 ∖ {𝐴}) ↔ (∅ ∈ 𝒫 𝐴 ∧ ∅ ≠ 𝐴))
6557, 63, 64sylanbrc 699 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥 ∈ 𝒫 𝐴) ∧ 𝑥 = 𝐴) → ∅ ∈ (𝒫 𝐴 ∖ {𝐴}))
66 simplr 807 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑥 ∈ 𝒫 𝐴) ∧ ¬ 𝑥 = 𝐴) → 𝑥 ∈ 𝒫 𝐴)
67 simpr 476 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑥 ∈ 𝒫 𝐴) ∧ ¬ 𝑥 = 𝐴) → ¬ 𝑥 = 𝐴)
6867neqned 2830 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑥 ∈ 𝒫 𝐴) ∧ ¬ 𝑥 = 𝐴) → 𝑥𝐴)
69 eldifsn 4350 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ (𝒫 𝐴 ∖ {𝐴}) ↔ (𝑥 ∈ 𝒫 𝐴𝑥𝐴))
7066, 68, 69sylanbrc 699 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥 ∈ 𝒫 𝐴) ∧ ¬ 𝑥 = 𝐴) → 𝑥 ∈ (𝒫 𝐴 ∖ {𝐴}))
7165, 70ifclda 4153 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ 𝒫 𝐴) → if(𝑥 = 𝐴, ∅, 𝑥) ∈ (𝒫 𝐴 ∖ {𝐴}))
72 eqid 2651 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥)) = (𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥))
7371, 72fmptd 6425 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥)):𝒫 𝐴⟶(𝒫 𝐴 ∖ {𝐴}))
74 fco 6096 . . . . . . . . . . . . . . . . 17 ((((𝐺𝐹) ↾ (𝒫 𝐴 ∖ {𝐴})):(𝒫 𝐴 ∖ {𝐴})⟶𝐴 ∧ (𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥)):𝒫 𝐴⟶(𝒫 𝐴 ∖ {𝐴})) → (((𝐺𝐹) ↾ (𝒫 𝐴 ∖ {𝐴})) ∘ (𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥))):𝒫 𝐴𝐴)
7555, 73, 74syl2anc 694 . . . . . . . . . . . . . . . 16 (𝜑 → (((𝐺𝐹) ↾ (𝒫 𝐴 ∖ {𝐴})) ∘ (𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥))):𝒫 𝐴𝐴)
76 frn 6091 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥)):𝒫 𝐴⟶(𝒫 𝐴 ∖ {𝐴}) → ran (𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥)) ⊆ (𝒫 𝐴 ∖ {𝐴}))
7773, 76syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ran (𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥)) ⊆ (𝒫 𝐴 ∖ {𝐴}))
78 cores 5676 . . . . . . . . . . . . . . . . . . 19 (ran (𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥)) ⊆ (𝒫 𝐴 ∖ {𝐴}) → (((𝐺𝐹) ↾ (𝒫 𝐴 ∖ {𝐴})) ∘ (𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥))) = ((𝐺𝐹) ∘ (𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥))))
7977, 78syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑 → (((𝐺𝐹) ↾ (𝒫 𝐴 ∖ {𝐴})) ∘ (𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥))) = ((𝐺𝐹) ∘ (𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥))))
80 canthp1lem2.4 . . . . . . . . . . . . . . . . . 18 𝐻 = ((𝐺𝐹) ∘ (𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥)))
8179, 80syl6eqr 2703 . . . . . . . . . . . . . . . . 17 (𝜑 → (((𝐺𝐹) ↾ (𝒫 𝐴 ∖ {𝐴})) ∘ (𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥))) = 𝐻)
8281feq1d 6068 . . . . . . . . . . . . . . . 16 (𝜑 → ((((𝐺𝐹) ↾ (𝒫 𝐴 ∖ {𝐴})) ∘ (𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥))):𝒫 𝐴𝐴𝐻:𝒫 𝐴𝐴))
8375, 82mpbid 222 . . . . . . . . . . . . . . 15 (𝜑𝐻:𝒫 𝐴𝐴)
84 inss1 3866 . . . . . . . . . . . . . . . 16 (𝒫 𝐴 ∩ dom card) ⊆ 𝒫 𝐴
8584a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → (𝒫 𝐴 ∩ dom card) ⊆ 𝒫 𝐴)
86 canthp1lem2.5 . . . . . . . . . . . . . . . 16 𝑊 = {⟨𝑥, 𝑟⟩ ∣ ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦𝑥 (𝐻‘(𝑟 “ {𝑦})) = 𝑦))}
87 canthp1lem2.6 . . . . . . . . . . . . . . . 16 𝐵 = dom 𝑊
88 eqid 2651 . . . . . . . . . . . . . . . 16 ((𝑊𝐵) “ {(𝐻𝐵)}) = ((𝑊𝐵) “ {(𝐻𝐵)})
8986, 87, 88canth4 9507 . . . . . . . . . . . . . . 15 ((𝐴 ∈ V ∧ 𝐻:𝒫 𝐴𝐴 ∧ (𝒫 𝐴 ∩ dom card) ⊆ 𝒫 𝐴) → (𝐵𝐴 ∧ ((𝑊𝐵) “ {(𝐻𝐵)}) ⊊ 𝐵 ∧ (𝐻𝐵) = (𝐻‘((𝑊𝐵) “ {(𝐻𝐵)}))))
904, 83, 85, 89syl3anc 1366 . . . . . . . . . . . . . 14 (𝜑 → (𝐵𝐴 ∧ ((𝑊𝐵) “ {(𝐻𝐵)}) ⊊ 𝐵 ∧ (𝐻𝐵) = (𝐻‘((𝑊𝐵) “ {(𝐻𝐵)}))))
9190simp1d 1093 . . . . . . . . . . . . 13 (𝜑𝐵𝐴)
9290simp2d 1094 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝑊𝐵) “ {(𝐻𝐵)}) ⊊ 𝐵)
9392pssned 3738 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝑊𝐵) “ {(𝐻𝐵)}) ≠ 𝐵)
9493necomd 2878 . . . . . . . . . . . . . . 15 (𝜑𝐵 ≠ ((𝑊𝐵) “ {(𝐻𝐵)}))
9590simp3d 1095 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (𝐻𝐵) = (𝐻‘((𝑊𝐵) “ {(𝐻𝐵)})))
9680fveq1i 6230 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐻𝐵) = (((𝐺𝐹) ∘ (𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥)))‘𝐵)
9780fveq1i 6230 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐻‘((𝑊𝐵) “ {(𝐻𝐵)})) = (((𝐺𝐹) ∘ (𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥)))‘((𝑊𝐵) “ {(𝐻𝐵)}))
9895, 96, 973eqtr3g 2708 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (((𝐺𝐹) ∘ (𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥)))‘𝐵) = (((𝐺𝐹) ∘ (𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥)))‘((𝑊𝐵) “ {(𝐻𝐵)})))
99 elpw2g 4857 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝐴 ∈ V → (𝐵 ∈ 𝒫 𝐴𝐵𝐴))
1004, 99syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → (𝐵 ∈ 𝒫 𝐴𝐵𝐴))
10191, 100mpbird 247 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑𝐵 ∈ 𝒫 𝐴)
102 fvco3 6314 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥)):𝒫 𝐴⟶(𝒫 𝐴 ∖ {𝐴}) ∧ 𝐵 ∈ 𝒫 𝐴) → (((𝐺𝐹) ∘ (𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥)))‘𝐵) = ((𝐺𝐹)‘((𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥))‘𝐵)))
10373, 101, 102syl2anc 694 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (((𝐺𝐹) ∘ (𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥)))‘𝐵) = ((𝐺𝐹)‘((𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥))‘𝐵)))
10492pssssd 3737 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑 → ((𝑊𝐵) “ {(𝐻𝐵)}) ⊆ 𝐵)
105104, 91sstrd 3646 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → ((𝑊𝐵) “ {(𝐻𝐵)}) ⊆ 𝐴)
106 elpw2g 4857 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝐴 ∈ V → (((𝑊𝐵) “ {(𝐻𝐵)}) ∈ 𝒫 𝐴 ↔ ((𝑊𝐵) “ {(𝐻𝐵)}) ⊆ 𝐴))
1074, 106syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → (((𝑊𝐵) “ {(𝐻𝐵)}) ∈ 𝒫 𝐴 ↔ ((𝑊𝐵) “ {(𝐻𝐵)}) ⊆ 𝐴))
108105, 107mpbird 247 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → ((𝑊𝐵) “ {(𝐻𝐵)}) ∈ 𝒫 𝐴)
109 fvco3 6314 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥)):𝒫 𝐴⟶(𝒫 𝐴 ∖ {𝐴}) ∧ ((𝑊𝐵) “ {(𝐻𝐵)}) ∈ 𝒫 𝐴) → (((𝐺𝐹) ∘ (𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥)))‘((𝑊𝐵) “ {(𝐻𝐵)})) = ((𝐺𝐹)‘((𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥))‘((𝑊𝐵) “ {(𝐻𝐵)}))))
11073, 108, 109syl2anc 694 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (((𝐺𝐹) ∘ (𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥)))‘((𝑊𝐵) “ {(𝐻𝐵)})) = ((𝐺𝐹)‘((𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥))‘((𝑊𝐵) “ {(𝐻𝐵)}))))
11198, 103, 1103eqtr3d 2693 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → ((𝐺𝐹)‘((𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥))‘𝐵)) = ((𝐺𝐹)‘((𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥))‘((𝑊𝐵) “ {(𝐻𝐵)}))))
112111adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝐵𝐴) → ((𝐺𝐹)‘((𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥))‘𝐵)) = ((𝐺𝐹)‘((𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥))‘((𝑊𝐵) “ {(𝐻𝐵)}))))
113 ifcl 4163 . . . . . . . . . . . . . . . . . . . . . . . 24 ((∅ ∈ 𝒫 𝐴𝐵 ∈ 𝒫 𝐴) → if(𝐵 = 𝐴, ∅, 𝐵) ∈ 𝒫 𝐴)
11456, 101, 113sylancr 696 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → if(𝐵 = 𝐴, ∅, 𝐵) ∈ 𝒫 𝐴)
115 eqeq1 2655 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑥 = 𝐵 → (𝑥 = 𝐴𝐵 = 𝐴))
116 id 22 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑥 = 𝐵𝑥 = 𝐵)
117115, 116ifbieq2d 4144 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥 = 𝐵 → if(𝑥 = 𝐴, ∅, 𝑥) = if(𝐵 = 𝐴, ∅, 𝐵))
118117, 72fvmptg 6319 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐵 ∈ 𝒫 𝐴 ∧ if(𝐵 = 𝐴, ∅, 𝐵) ∈ 𝒫 𝐴) → ((𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥))‘𝐵) = if(𝐵 = 𝐴, ∅, 𝐵))
119101, 114, 118syl2anc 694 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → ((𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥))‘𝐵) = if(𝐵 = 𝐴, ∅, 𝐵))
120 pssne 3736 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐵𝐴𝐵𝐴)
121120neneqd 2828 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐵𝐴 → ¬ 𝐵 = 𝐴)
122121iffalsed 4130 . . . . . . . . . . . . . . . . . . . . . 22 (𝐵𝐴 → if(𝐵 = 𝐴, ∅, 𝐵) = 𝐵)
123119, 122sylan9eq 2705 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝐵𝐴) → ((𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥))‘𝐵) = 𝐵)
124123fveq2d 6233 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝐵𝐴) → ((𝐺𝐹)‘((𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥))‘𝐵)) = ((𝐺𝐹)‘𝐵))
125 ifcl 4163 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((∅ ∈ 𝒫 𝐴 ∧ ((𝑊𝐵) “ {(𝐻𝐵)}) ∈ 𝒫 𝐴) → if(((𝑊𝐵) “ {(𝐻𝐵)}) = 𝐴, ∅, ((𝑊𝐵) “ {(𝐻𝐵)})) ∈ 𝒫 𝐴)
12656, 108, 125sylancr 696 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → if(((𝑊𝐵) “ {(𝐻𝐵)}) = 𝐴, ∅, ((𝑊𝐵) “ {(𝐻𝐵)})) ∈ 𝒫 𝐴)
127 eqeq1 2655 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑥 = ((𝑊𝐵) “ {(𝐻𝐵)}) → (𝑥 = 𝐴 ↔ ((𝑊𝐵) “ {(𝐻𝐵)}) = 𝐴))
128 id 22 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑥 = ((𝑊𝐵) “ {(𝐻𝐵)}) → 𝑥 = ((𝑊𝐵) “ {(𝐻𝐵)}))
129127, 128ifbieq2d 4144 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑥 = ((𝑊𝐵) “ {(𝐻𝐵)}) → if(𝑥 = 𝐴, ∅, 𝑥) = if(((𝑊𝐵) “ {(𝐻𝐵)}) = 𝐴, ∅, ((𝑊𝐵) “ {(𝐻𝐵)})))
130129, 72fvmptg 6319 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝑊𝐵) “ {(𝐻𝐵)}) ∈ 𝒫 𝐴 ∧ if(((𝑊𝐵) “ {(𝐻𝐵)}) = 𝐴, ∅, ((𝑊𝐵) “ {(𝐻𝐵)})) ∈ 𝒫 𝐴) → ((𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥))‘((𝑊𝐵) “ {(𝐻𝐵)})) = if(((𝑊𝐵) “ {(𝐻𝐵)}) = 𝐴, ∅, ((𝑊𝐵) “ {(𝐻𝐵)})))
131108, 126, 130syl2anc 694 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → ((𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥))‘((𝑊𝐵) “ {(𝐻𝐵)})) = if(((𝑊𝐵) “ {(𝐻𝐵)}) = 𝐴, ∅, ((𝑊𝐵) “ {(𝐻𝐵)})))
132131adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝐵𝐴) → ((𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥))‘((𝑊𝐵) “ {(𝐻𝐵)})) = if(((𝑊𝐵) “ {(𝐻𝐵)}) = 𝐴, ∅, ((𝑊𝐵) “ {(𝐻𝐵)})))
133 sspsstr 3745 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝑊𝐵) “ {(𝐻𝐵)}) ⊆ 𝐵𝐵𝐴) → ((𝑊𝐵) “ {(𝐻𝐵)}) ⊊ 𝐴)
134104, 133sylan 487 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝐵𝐴) → ((𝑊𝐵) “ {(𝐻𝐵)}) ⊊ 𝐴)
135134pssned 3738 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝐵𝐴) → ((𝑊𝐵) “ {(𝐻𝐵)}) ≠ 𝐴)
136135neneqd 2828 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝐵𝐴) → ¬ ((𝑊𝐵) “ {(𝐻𝐵)}) = 𝐴)
137136iffalsed 4130 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝐵𝐴) → if(((𝑊𝐵) “ {(𝐻𝐵)}) = 𝐴, ∅, ((𝑊𝐵) “ {(𝐻𝐵)})) = ((𝑊𝐵) “ {(𝐻𝐵)}))
138132, 137eqtrd 2685 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝐵𝐴) → ((𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥))‘((𝑊𝐵) “ {(𝐻𝐵)})) = ((𝑊𝐵) “ {(𝐻𝐵)}))
139138fveq2d 6233 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝐵𝐴) → ((𝐺𝐹)‘((𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥))‘((𝑊𝐵) “ {(𝐻𝐵)}))) = ((𝐺𝐹)‘((𝑊𝐵) “ {(𝐻𝐵)})))
140112, 124, 1393eqtr3d 2693 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝐵𝐴) → ((𝐺𝐹)‘𝐵) = ((𝐺𝐹)‘((𝑊𝐵) “ {(𝐻𝐵)})))
141101, 120anim12i 589 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝐵𝐴) → (𝐵 ∈ 𝒫 𝐴𝐵𝐴))
142 eldifsn 4350 . . . . . . . . . . . . . . . . . . . . 21 (𝐵 ∈ (𝒫 𝐴 ∖ {𝐴}) ↔ (𝐵 ∈ 𝒫 𝐴𝐵𝐴))
143141, 142sylibr 224 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝐵𝐴) → 𝐵 ∈ (𝒫 𝐴 ∖ {𝐴}))
144 fvres 6245 . . . . . . . . . . . . . . . . . . . 20 (𝐵 ∈ (𝒫 𝐴 ∖ {𝐴}) → (((𝐺𝐹) ↾ (𝒫 𝐴 ∖ {𝐴}))‘𝐵) = ((𝐺𝐹)‘𝐵))
145143, 144syl 17 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝐵𝐴) → (((𝐺𝐹) ↾ (𝒫 𝐴 ∖ {𝐴}))‘𝐵) = ((𝐺𝐹)‘𝐵))
146108adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝐵𝐴) → ((𝑊𝐵) “ {(𝐻𝐵)}) ∈ 𝒫 𝐴)
147 eldifsn 4350 . . . . . . . . . . . . . . . . . . . . 21 (((𝑊𝐵) “ {(𝐻𝐵)}) ∈ (𝒫 𝐴 ∖ {𝐴}) ↔ (((𝑊𝐵) “ {(𝐻𝐵)}) ∈ 𝒫 𝐴 ∧ ((𝑊𝐵) “ {(𝐻𝐵)}) ≠ 𝐴))
148146, 135, 147sylanbrc 699 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝐵𝐴) → ((𝑊𝐵) “ {(𝐻𝐵)}) ∈ (𝒫 𝐴 ∖ {𝐴}))
149 fvres 6245 . . . . . . . . . . . . . . . . . . . 20 (((𝑊𝐵) “ {(𝐻𝐵)}) ∈ (𝒫 𝐴 ∖ {𝐴}) → (((𝐺𝐹) ↾ (𝒫 𝐴 ∖ {𝐴}))‘((𝑊𝐵) “ {(𝐻𝐵)})) = ((𝐺𝐹)‘((𝑊𝐵) “ {(𝐻𝐵)})))
150148, 149syl 17 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝐵𝐴) → (((𝐺𝐹) ↾ (𝒫 𝐴 ∖ {𝐴}))‘((𝑊𝐵) “ {(𝐻𝐵)})) = ((𝐺𝐹)‘((𝑊𝐵) “ {(𝐻𝐵)})))
151140, 145, 1503eqtr4d 2695 . . . . . . . . . . . . . . . . . 18 ((𝜑𝐵𝐴) → (((𝐺𝐹) ↾ (𝒫 𝐴 ∖ {𝐴}))‘𝐵) = (((𝐺𝐹) ↾ (𝒫 𝐴 ∖ {𝐴}))‘((𝑊𝐵) “ {(𝐻𝐵)})))
152 f1of1 6174 . . . . . . . . . . . . . . . . . . . . 21 (((𝐺𝐹) ↾ (𝒫 𝐴 ∖ {𝐴})):(𝒫 𝐴 ∖ {𝐴})–1-1-onto𝐴 → ((𝐺𝐹) ↾ (𝒫 𝐴 ∖ {𝐴})):(𝒫 𝐴 ∖ {𝐴})–1-1𝐴)
15353, 152syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ((𝐺𝐹) ↾ (𝒫 𝐴 ∖ {𝐴})):(𝒫 𝐴 ∖ {𝐴})–1-1𝐴)
154153adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝐵𝐴) → ((𝐺𝐹) ↾ (𝒫 𝐴 ∖ {𝐴})):(𝒫 𝐴 ∖ {𝐴})–1-1𝐴)
155 f1fveq 6559 . . . . . . . . . . . . . . . . . . 19 ((((𝐺𝐹) ↾ (𝒫 𝐴 ∖ {𝐴})):(𝒫 𝐴 ∖ {𝐴})–1-1𝐴 ∧ (𝐵 ∈ (𝒫 𝐴 ∖ {𝐴}) ∧ ((𝑊𝐵) “ {(𝐻𝐵)}) ∈ (𝒫 𝐴 ∖ {𝐴}))) → ((((𝐺𝐹) ↾ (𝒫 𝐴 ∖ {𝐴}))‘𝐵) = (((𝐺𝐹) ↾ (𝒫 𝐴 ∖ {𝐴}))‘((𝑊𝐵) “ {(𝐻𝐵)})) ↔ 𝐵 = ((𝑊𝐵) “ {(𝐻𝐵)})))
156154, 143, 148, 155syl12anc 1364 . . . . . . . . . . . . . . . . . 18 ((𝜑𝐵𝐴) → ((((𝐺𝐹) ↾ (𝒫 𝐴 ∖ {𝐴}))‘𝐵) = (((𝐺𝐹) ↾ (𝒫 𝐴 ∖ {𝐴}))‘((𝑊𝐵) “ {(𝐻𝐵)})) ↔ 𝐵 = ((𝑊𝐵) “ {(𝐻𝐵)})))
157151, 156mpbid 222 . . . . . . . . . . . . . . . . 17 ((𝜑𝐵𝐴) → 𝐵 = ((𝑊𝐵) “ {(𝐻𝐵)}))
158157ex 449 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐵𝐴𝐵 = ((𝑊𝐵) “ {(𝐻𝐵)})))
159158necon3ad 2836 . . . . . . . . . . . . . . 15 (𝜑 → (𝐵 ≠ ((𝑊𝐵) “ {(𝐻𝐵)}) → ¬ 𝐵𝐴))
16094, 159mpd 15 . . . . . . . . . . . . . 14 (𝜑 → ¬ 𝐵𝐴)
161 npss 3750 . . . . . . . . . . . . . 14 𝐵𝐴 ↔ (𝐵𝐴𝐵 = 𝐴))
162160, 161sylib 208 . . . . . . . . . . . . 13 (𝜑 → (𝐵𝐴𝐵 = 𝐴))
16391, 162mpd 15 . . . . . . . . . . . 12 (𝜑𝐵 = 𝐴)
164 eqid 2651 . . . . . . . . . . . . . . . . . . . 20 𝐵 = 𝐵
165 eqid 2651 . . . . . . . . . . . . . . . . . . . 20 (𝑊𝐵) = (𝑊𝐵)
166164, 165pm3.2i 470 . . . . . . . . . . . . . . . . . . 19 (𝐵 = 𝐵 ∧ (𝑊𝐵) = (𝑊𝐵))
16784sseli 3632 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ (𝒫 𝐴 ∩ dom card) → 𝑥 ∈ 𝒫 𝐴)
168 ffvelrn 6397 . . . . . . . . . . . . . . . . . . . . 21 ((𝐻:𝒫 𝐴𝐴𝑥 ∈ 𝒫 𝐴) → (𝐻𝑥) ∈ 𝐴)
16983, 167, 168syl2an 493 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥 ∈ (𝒫 𝐴 ∩ dom card)) → (𝐻𝑥) ∈ 𝐴)
17086, 4, 169, 87fpwwe 9506 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((𝐵𝑊(𝑊𝐵) ∧ (𝐻𝐵) ∈ 𝐵) ↔ (𝐵 = 𝐵 ∧ (𝑊𝐵) = (𝑊𝐵))))
171166, 170mpbiri 248 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐵𝑊(𝑊𝐵) ∧ (𝐻𝐵) ∈ 𝐵))
172171simpld 474 . . . . . . . . . . . . . . . . 17 (𝜑𝐵𝑊(𝑊𝐵))
17386, 4fpwwelem 9505 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐵𝑊(𝑊𝐵) ↔ ((𝐵𝐴 ∧ (𝑊𝐵) ⊆ (𝐵 × 𝐵)) ∧ ((𝑊𝐵) We 𝐵 ∧ ∀𝑦𝐵 (𝐻‘((𝑊𝐵) “ {𝑦})) = 𝑦))))
174172, 173mpbid 222 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝐵𝐴 ∧ (𝑊𝐵) ⊆ (𝐵 × 𝐵)) ∧ ((𝑊𝐵) We 𝐵 ∧ ∀𝑦𝐵 (𝐻‘((𝑊𝐵) “ {𝑦})) = 𝑦)))
175174simprd 478 . . . . . . . . . . . . . . 15 (𝜑 → ((𝑊𝐵) We 𝐵 ∧ ∀𝑦𝐵 (𝐻‘((𝑊𝐵) “ {𝑦})) = 𝑦))
176175simpld 474 . . . . . . . . . . . . . 14 (𝜑 → (𝑊𝐵) We 𝐵)
177 fvex 6239 . . . . . . . . . . . . . . 15 (𝑊𝐵) ∈ V
178 weeq1 5131 . . . . . . . . . . . . . . 15 (𝑟 = (𝑊𝐵) → (𝑟 We 𝐵 ↔ (𝑊𝐵) We 𝐵))
179177, 178spcev 3331 . . . . . . . . . . . . . 14 ((𝑊𝐵) We 𝐵 → ∃𝑟 𝑟 We 𝐵)
180176, 179syl 17 . . . . . . . . . . . . 13 (𝜑 → ∃𝑟 𝑟 We 𝐵)
181 ween 8896 . . . . . . . . . . . . 13 (𝐵 ∈ dom card ↔ ∃𝑟 𝑟 We 𝐵)
182180, 181sylibr 224 . . . . . . . . . . . 12 (𝜑𝐵 ∈ dom card)
183163, 182eqeltrrd 2731 . . . . . . . . . . 11 (𝜑𝐴 ∈ dom card)
184 domtri2 8853 . . . . . . . . . . 11 ((ω ∈ dom card ∧ 𝐴 ∈ dom card) → (ω ≼ 𝐴 ↔ ¬ 𝐴 ≺ ω))
18521, 183, 184sylancr 696 . . . . . . . . . 10 (𝜑 → (ω ≼ 𝐴 ↔ ¬ 𝐴 ≺ ω))
186 infcda1 9053 . . . . . . . . . 10 (ω ≼ 𝐴 → (𝐴 +𝑐 1𝑜) ≈ 𝐴)
187185, 186syl6bir 244 . . . . . . . . 9 (𝜑 → (¬ 𝐴 ≺ ω → (𝐴 +𝑐 1𝑜) ≈ 𝐴))
188 ensym 8046 . . . . . . . . 9 ((𝐴 +𝑐 1𝑜) ≈ 𝐴𝐴 ≈ (𝐴 +𝑐 1𝑜))
189187, 188syl6 35 . . . . . . . 8 (𝜑 → (¬ 𝐴 ≺ ω → 𝐴 ≈ (𝐴 +𝑐 1𝑜)))
19018, 189mt3d 140 . . . . . . 7 (𝜑𝐴 ≺ ω)
191 2onn 7765 . . . . . . . 8 2𝑜 ∈ ω
192 nnsdom 8589 . . . . . . . 8 (2𝑜 ∈ ω → 2𝑜 ≺ ω)
193191, 192ax-mp 5 . . . . . . 7 2𝑜 ≺ ω
194 cdafi 9050 . . . . . . 7 ((𝐴 ≺ ω ∧ 2𝑜 ≺ ω) → (𝐴 +𝑐 2𝑜) ≺ ω)
195190, 193, 194sylancl 695 . . . . . 6 (𝜑 → (𝐴 +𝑐 2𝑜) ≺ ω)
196 isfinite 8587 . . . . . 6 ((𝐴 +𝑐 2𝑜) ∈ Fin ↔ (𝐴 +𝑐 2𝑜) ≺ ω)
197195, 196sylibr 224 . . . . 5 (𝜑 → (𝐴 +𝑐 2𝑜) ∈ Fin)
198 sssucid 5840 . . . . . . . . . 10 1𝑜 ⊆ suc 1𝑜
199 df-2o 7606 . . . . . . . . . 10 2𝑜 = suc 1𝑜
200198, 199sseqtr4i 3671 . . . . . . . . 9 1𝑜 ⊆ 2𝑜
201 xpss1 5161 . . . . . . . . 9 (1𝑜 ⊆ 2𝑜 → (1𝑜 × {1𝑜}) ⊆ (2𝑜 × {1𝑜}))
202200, 201ax-mp 5 . . . . . . . 8 (1𝑜 × {1𝑜}) ⊆ (2𝑜 × {1𝑜})
203 unss2 3817 . . . . . . . 8 ((1𝑜 × {1𝑜}) ⊆ (2𝑜 × {1𝑜}) → ((𝐴 × {∅}) ∪ (1𝑜 × {1𝑜})) ⊆ ((𝐴 × {∅}) ∪ (2𝑜 × {1𝑜})))
204202, 203mp1i 13 . . . . . . 7 (𝜑 → ((𝐴 × {∅}) ∪ (1𝑜 × {1𝑜})) ⊆ ((𝐴 × {∅}) ∪ (2𝑜 × {1𝑜})))
205 ssun2 3810 . . . . . . . . 9 (2𝑜 × {1𝑜}) ⊆ ((𝐴 × {∅}) ∪ (2𝑜 × {1𝑜}))
206 1onn 7764 . . . . . . . . . . . . 13 1𝑜 ∈ ω
207206elexi 3244 . . . . . . . . . . . 12 1𝑜 ∈ V
208207sucid 5842 . . . . . . . . . . 11 1𝑜 ∈ suc 1𝑜
209208, 199eleqtrri 2729 . . . . . . . . . 10 1𝑜 ∈ 2𝑜
210207snid 4241 . . . . . . . . . 10 1𝑜 ∈ {1𝑜}
211 opelxpi 5182 . . . . . . . . . 10 ((1𝑜 ∈ 2𝑜 ∧ 1𝑜 ∈ {1𝑜}) → ⟨1𝑜, 1𝑜⟩ ∈ (2𝑜 × {1𝑜}))
212209, 210, 211mp2an 708 . . . . . . . . 9 ⟨1𝑜, 1𝑜⟩ ∈ (2𝑜 × {1𝑜})
213205, 212sselii 3633 . . . . . . . 8 ⟨1𝑜, 1𝑜⟩ ∈ ((𝐴 × {∅}) ∪ (2𝑜 × {1𝑜}))
214 1n0 7620 . . . . . . . . . . . 12 1𝑜 ≠ ∅
215214neii 2825 . . . . . . . . . . 11 ¬ 1𝑜 = ∅
216 opelxp2 5185 . . . . . . . . . . . 12 (⟨1𝑜, 1𝑜⟩ ∈ (𝐴 × {∅}) → 1𝑜 ∈ {∅})
217 elsni 4227 . . . . . . . . . . . 12 (1𝑜 ∈ {∅} → 1𝑜 = ∅)
218216, 217syl 17 . . . . . . . . . . 11 (⟨1𝑜, 1𝑜⟩ ∈ (𝐴 × {∅}) → 1𝑜 = ∅)
219215, 218mto 188 . . . . . . . . . 10 ¬ ⟨1𝑜, 1𝑜⟩ ∈ (𝐴 × {∅})
220 nnord 7115 . . . . . . . . . . . 12 (1𝑜 ∈ ω → Ord 1𝑜)
221 ordirr 5779 . . . . . . . . . . . 12 (Ord 1𝑜 → ¬ 1𝑜 ∈ 1𝑜)
222206, 220, 221mp2b 10 . . . . . . . . . . 11 ¬ 1𝑜 ∈ 1𝑜
223 opelxp1 5184 . . . . . . . . . . 11 (⟨1𝑜, 1𝑜⟩ ∈ (1𝑜 × {1𝑜}) → 1𝑜 ∈ 1𝑜)
224222, 223mto 188 . . . . . . . . . 10 ¬ ⟨1𝑜, 1𝑜⟩ ∈ (1𝑜 × {1𝑜})
225219, 224pm3.2ni 917 . . . . . . . . 9 ¬ (⟨1𝑜, 1𝑜⟩ ∈ (𝐴 × {∅}) ∨ ⟨1𝑜, 1𝑜⟩ ∈ (1𝑜 × {1𝑜}))
226 elun 3786 . . . . . . . . 9 (⟨1𝑜, 1𝑜⟩ ∈ ((𝐴 × {∅}) ∪ (1𝑜 × {1𝑜})) ↔ (⟨1𝑜, 1𝑜⟩ ∈ (𝐴 × {∅}) ∨ ⟨1𝑜, 1𝑜⟩ ∈ (1𝑜 × {1𝑜})))
227225, 226mtbir 312 . . . . . . . 8 ¬ ⟨1𝑜, 1𝑜⟩ ∈ ((𝐴 × {∅}) ∪ (1𝑜 × {1𝑜}))
228 ssnelpss 3751 . . . . . . . 8 (((𝐴 × {∅}) ∪ (1𝑜 × {1𝑜})) ⊆ ((𝐴 × {∅}) ∪ (2𝑜 × {1𝑜})) → ((⟨1𝑜, 1𝑜⟩ ∈ ((𝐴 × {∅}) ∪ (2𝑜 × {1𝑜})) ∧ ¬ ⟨1𝑜, 1𝑜⟩ ∈ ((𝐴 × {∅}) ∪ (1𝑜 × {1𝑜}))) → ((𝐴 × {∅}) ∪ (1𝑜 × {1𝑜})) ⊊ ((𝐴 × {∅}) ∪ (2𝑜 × {1𝑜}))))
229213, 227, 228mp2ani 714 . . . . . . 7 (((𝐴 × {∅}) ∪ (1𝑜 × {1𝑜})) ⊆ ((𝐴 × {∅}) ∪ (2𝑜 × {1𝑜})) → ((𝐴 × {∅}) ∪ (1𝑜 × {1𝑜})) ⊊ ((𝐴 × {∅}) ∪ (2𝑜 × {1𝑜})))
230204, 229syl 17 . . . . . 6 (𝜑 → ((𝐴 × {∅}) ∪ (1𝑜 × {1𝑜})) ⊊ ((𝐴 × {∅}) ∪ (2𝑜 × {1𝑜})))
231 cdaval 9030 . . . . . . . 8 ((𝐴 ∈ V ∧ 1𝑜 ∈ ω) → (𝐴 +𝑐 1𝑜) = ((𝐴 × {∅}) ∪ (1𝑜 × {1𝑜})))
2324, 206, 231sylancl 695 . . . . . . 7 (𝜑 → (𝐴 +𝑐 1𝑜) = ((𝐴 × {∅}) ∪ (1𝑜 × {1𝑜})))
233 cdaval 9030 . . . . . . . 8 ((𝐴 ∈ V ∧ 2𝑜 ∈ ω) → (𝐴 +𝑐 2𝑜) = ((𝐴 × {∅}) ∪ (2𝑜 × {1𝑜})))
2344, 191, 233sylancl 695 . . . . . . 7 (𝜑 → (𝐴 +𝑐 2𝑜) = ((𝐴 × {∅}) ∪ (2𝑜 × {1𝑜})))
235232, 234psseq12d 3734 . . . . . 6 (𝜑 → ((𝐴 +𝑐 1𝑜) ⊊ (𝐴 +𝑐 2𝑜) ↔ ((𝐴 × {∅}) ∪ (1𝑜 × {1𝑜})) ⊊ ((𝐴 × {∅}) ∪ (2𝑜 × {1𝑜}))))
236230, 235mpbird 247 . . . . 5 (𝜑 → (𝐴 +𝑐 1𝑜) ⊊ (𝐴 +𝑐 2𝑜))
237 php3 8187 . . . . 5 (((𝐴 +𝑐 2𝑜) ∈ Fin ∧ (𝐴 +𝑐 1𝑜) ⊊ (𝐴 +𝑐 2𝑜)) → (𝐴 +𝑐 1𝑜) ≺ (𝐴 +𝑐 2𝑜))
238197, 236, 237syl2anc 694 . . . 4 (𝜑 → (𝐴 +𝑐 1𝑜) ≺ (𝐴 +𝑐 2𝑜))
239 canthp1lem1 9512 . . . . 5 (1𝑜𝐴 → (𝐴 +𝑐 2𝑜) ≼ 𝒫 𝐴)
2401, 239syl 17 . . . 4 (𝜑 → (𝐴 +𝑐 2𝑜) ≼ 𝒫 𝐴)
241 sdomdomtr 8134 . . . 4 (((𝐴 +𝑐 1𝑜) ≺ (𝐴 +𝑐 2𝑜) ∧ (𝐴 +𝑐 2𝑜) ≼ 𝒫 𝐴) → (𝐴 +𝑐 1𝑜) ≺ 𝒫 𝐴)
242238, 240, 241syl2anc 694 . . 3 (𝜑 → (𝐴 +𝑐 1𝑜) ≺ 𝒫 𝐴)
243 sdomnen 8026 . . 3 ((𝐴 +𝑐 1𝑜) ≺ 𝒫 𝐴 → ¬ (𝐴 +𝑐 1𝑜) ≈ 𝒫 𝐴)
244242, 243syl 17 . 2 (𝜑 → ¬ (𝐴 +𝑐 1𝑜) ≈ 𝒫 𝐴)
24511, 244pm2.65i 185 1 ¬ 𝜑
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 382  wa 383  w3a 1054   = wceq 1523  wex 1744  wcel 2030  wne 2823  wral 2941  Vcvv 3231  cdif 3604  cun 3605  cin 3606  wss 3607  wpss 3608  c0 3948  ifcif 4119  𝒫 cpw 4191  {csn 4210  cop 4216   cuni 4468   class class class wbr 4685  {copab 4745  cmpt 4762   We wwe 5101   × cxp 5141  ccnv 5142  dom cdm 5143  ran crn 5144  cres 5145  cima 5146  ccom 5147  Ord word 5760  Oncon0 5761  suc csuc 5763  Fun wfun 5920   Fn wfn 5921  wf 5922  1-1wf1 5923  ontowfo 5924  1-1-ontowf1o 5925  cfv 5926  (class class class)co 6690  ωcom 7107  1𝑜c1o 7598  2𝑜c2o 7599  cen 7994  cdom 7995  csdm 7996  Fincfn 7997  cardccrd 8799   +𝑐 ccda 9027
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-inf2 8576
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-se 5103  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-isom 5935  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-2o 7606  df-oadd 7609  df-er 7787  df-map 7901  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-oi 8456  df-card 8803  df-cda 9028
This theorem is referenced by:  canthp1  9514
  Copyright terms: Public domain W3C validator