MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  canthp1 Structured version   Visualization version   GIF version

Theorem canthp1 9514
Description: A slightly stronger form of Cantor's theorem: For 1 < 𝑛, 𝑛 + 1 < 2↑𝑛. Corollary 1.6 of [KanamoriPincus] p. 417. (Contributed by Mario Carneiro, 18-May-2015.)
Assertion
Ref Expression
canthp1 (1𝑜𝐴 → (𝐴 +𝑐 1𝑜) ≺ 𝒫 𝐴)

Proof of Theorem canthp1
Dummy variables 𝑓 𝑎 𝑔 𝑟 𝑠 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1sdom2 8200 . . . 4 1𝑜 ≺ 2𝑜
2 sdomdom 8025 . . . 4 (1𝑜 ≺ 2𝑜 → 1𝑜 ≼ 2𝑜)
3 cdadom2 9047 . . . 4 (1𝑜 ≼ 2𝑜 → (𝐴 +𝑐 1𝑜) ≼ (𝐴 +𝑐 2𝑜))
41, 2, 3mp2b 10 . . 3 (𝐴 +𝑐 1𝑜) ≼ (𝐴 +𝑐 2𝑜)
5 canthp1lem1 9512 . . 3 (1𝑜𝐴 → (𝐴 +𝑐 2𝑜) ≼ 𝒫 𝐴)
6 domtr 8050 . . 3 (((𝐴 +𝑐 1𝑜) ≼ (𝐴 +𝑐 2𝑜) ∧ (𝐴 +𝑐 2𝑜) ≼ 𝒫 𝐴) → (𝐴 +𝑐 1𝑜) ≼ 𝒫 𝐴)
74, 5, 6sylancr 696 . 2 (1𝑜𝐴 → (𝐴 +𝑐 1𝑜) ≼ 𝒫 𝐴)
8 fal 1530 . . 3 ¬ ⊥
9 ensym 8046 . . . . 5 ((𝐴 +𝑐 1𝑜) ≈ 𝒫 𝐴 → 𝒫 𝐴 ≈ (𝐴 +𝑐 1𝑜))
10 bren 8006 . . . . 5 (𝒫 𝐴 ≈ (𝐴 +𝑐 1𝑜) ↔ ∃𝑓 𝑓:𝒫 𝐴1-1-onto→(𝐴 +𝑐 1𝑜))
119, 10sylib 208 . . . 4 ((𝐴 +𝑐 1𝑜) ≈ 𝒫 𝐴 → ∃𝑓 𝑓:𝒫 𝐴1-1-onto→(𝐴 +𝑐 1𝑜))
12 f1of 6175 . . . . . . . . . 10 (𝑓:𝒫 𝐴1-1-onto→(𝐴 +𝑐 1𝑜) → 𝑓:𝒫 𝐴⟶(𝐴 +𝑐 1𝑜))
13 relsdom 8004 . . . . . . . . . . . 12 Rel ≺
1413brrelex2i 5193 . . . . . . . . . . 11 (1𝑜𝐴𝐴 ∈ V)
15 pwidg 4206 . . . . . . . . . . 11 (𝐴 ∈ V → 𝐴 ∈ 𝒫 𝐴)
1614, 15syl 17 . . . . . . . . . 10 (1𝑜𝐴𝐴 ∈ 𝒫 𝐴)
17 ffvelrn 6397 . . . . . . . . . 10 ((𝑓:𝒫 𝐴⟶(𝐴 +𝑐 1𝑜) ∧ 𝐴 ∈ 𝒫 𝐴) → (𝑓𝐴) ∈ (𝐴 +𝑐 1𝑜))
1812, 16, 17syl2anr 494 . . . . . . . . 9 ((1𝑜𝐴𝑓:𝒫 𝐴1-1-onto→(𝐴 +𝑐 1𝑜)) → (𝑓𝐴) ∈ (𝐴 +𝑐 1𝑜))
19 cda1dif 9036 . . . . . . . . 9 ((𝑓𝐴) ∈ (𝐴 +𝑐 1𝑜) → ((𝐴 +𝑐 1𝑜) ∖ {(𝑓𝐴)}) ≈ 𝐴)
2018, 19syl 17 . . . . . . . 8 ((1𝑜𝐴𝑓:𝒫 𝐴1-1-onto→(𝐴 +𝑐 1𝑜)) → ((𝐴 +𝑐 1𝑜) ∖ {(𝑓𝐴)}) ≈ 𝐴)
21 bren 8006 . . . . . . . 8 (((𝐴 +𝑐 1𝑜) ∖ {(𝑓𝐴)}) ≈ 𝐴 ↔ ∃𝑔 𝑔:((𝐴 +𝑐 1𝑜) ∖ {(𝑓𝐴)})–1-1-onto𝐴)
2220, 21sylib 208 . . . . . . 7 ((1𝑜𝐴𝑓:𝒫 𝐴1-1-onto→(𝐴 +𝑐 1𝑜)) → ∃𝑔 𝑔:((𝐴 +𝑐 1𝑜) ∖ {(𝑓𝐴)})–1-1-onto𝐴)
23 simpll 805 . . . . . . . . 9 (((1𝑜𝐴𝑓:𝒫 𝐴1-1-onto→(𝐴 +𝑐 1𝑜)) ∧ 𝑔:((𝐴 +𝑐 1𝑜) ∖ {(𝑓𝐴)})–1-1-onto𝐴) → 1𝑜𝐴)
24 simplr 807 . . . . . . . . 9 (((1𝑜𝐴𝑓:𝒫 𝐴1-1-onto→(𝐴 +𝑐 1𝑜)) ∧ 𝑔:((𝐴 +𝑐 1𝑜) ∖ {(𝑓𝐴)})–1-1-onto𝐴) → 𝑓:𝒫 𝐴1-1-onto→(𝐴 +𝑐 1𝑜))
25 simpr 476 . . . . . . . . 9 (((1𝑜𝐴𝑓:𝒫 𝐴1-1-onto→(𝐴 +𝑐 1𝑜)) ∧ 𝑔:((𝐴 +𝑐 1𝑜) ∖ {(𝑓𝐴)})–1-1-onto𝐴) → 𝑔:((𝐴 +𝑐 1𝑜) ∖ {(𝑓𝐴)})–1-1-onto𝐴)
26 eqeq1 2655 . . . . . . . . . . . 12 (𝑤 = 𝑥 → (𝑤 = 𝐴𝑥 = 𝐴))
27 id 22 . . . . . . . . . . . 12 (𝑤 = 𝑥𝑤 = 𝑥)
2826, 27ifbieq2d 4144 . . . . . . . . . . 11 (𝑤 = 𝑥 → if(𝑤 = 𝐴, ∅, 𝑤) = if(𝑥 = 𝐴, ∅, 𝑥))
2928cbvmptv 4783 . . . . . . . . . 10 (𝑤 ∈ 𝒫 𝐴 ↦ if(𝑤 = 𝐴, ∅, 𝑤)) = (𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥))
3029coeq2i 5315 . . . . . . . . 9 ((𝑔𝑓) ∘ (𝑤 ∈ 𝒫 𝐴 ↦ if(𝑤 = 𝐴, ∅, 𝑤))) = ((𝑔𝑓) ∘ (𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥)))
31 eqid 2651 . . . . . . . . . 10 {⟨𝑎, 𝑠⟩ ∣ ((𝑎𝐴𝑠 ⊆ (𝑎 × 𝑎)) ∧ (𝑠 We 𝑎 ∧ ∀𝑧𝑎 (((𝑔𝑓) ∘ (𝑤 ∈ 𝒫 𝐴 ↦ if(𝑤 = 𝐴, ∅, 𝑤)))‘(𝑠 “ {𝑧})) = 𝑧))} = {⟨𝑎, 𝑠⟩ ∣ ((𝑎𝐴𝑠 ⊆ (𝑎 × 𝑎)) ∧ (𝑠 We 𝑎 ∧ ∀𝑧𝑎 (((𝑔𝑓) ∘ (𝑤 ∈ 𝒫 𝐴 ↦ if(𝑤 = 𝐴, ∅, 𝑤)))‘(𝑠 “ {𝑧})) = 𝑧))}
3231fpwwecbv 9504 . . . . . . . . 9 {⟨𝑎, 𝑠⟩ ∣ ((𝑎𝐴𝑠 ⊆ (𝑎 × 𝑎)) ∧ (𝑠 We 𝑎 ∧ ∀𝑧𝑎 (((𝑔𝑓) ∘ (𝑤 ∈ 𝒫 𝐴 ↦ if(𝑤 = 𝐴, ∅, 𝑤)))‘(𝑠 “ {𝑧})) = 𝑧))} = {⟨𝑥, 𝑟⟩ ∣ ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦𝑥 (((𝑔𝑓) ∘ (𝑤 ∈ 𝒫 𝐴 ↦ if(𝑤 = 𝐴, ∅, 𝑤)))‘(𝑟 “ {𝑦})) = 𝑦))}
33 eqid 2651 . . . . . . . . 9 dom {⟨𝑎, 𝑠⟩ ∣ ((𝑎𝐴𝑠 ⊆ (𝑎 × 𝑎)) ∧ (𝑠 We 𝑎 ∧ ∀𝑧𝑎 (((𝑔𝑓) ∘ (𝑤 ∈ 𝒫 𝐴 ↦ if(𝑤 = 𝐴, ∅, 𝑤)))‘(𝑠 “ {𝑧})) = 𝑧))} = dom {⟨𝑎, 𝑠⟩ ∣ ((𝑎𝐴𝑠 ⊆ (𝑎 × 𝑎)) ∧ (𝑠 We 𝑎 ∧ ∀𝑧𝑎 (((𝑔𝑓) ∘ (𝑤 ∈ 𝒫 𝐴 ↦ if(𝑤 = 𝐴, ∅, 𝑤)))‘(𝑠 “ {𝑧})) = 𝑧))}
3423, 24, 25, 30, 32, 33canthp1lem2 9513 . . . . . . . 8 ¬ ((1𝑜𝐴𝑓:𝒫 𝐴1-1-onto→(𝐴 +𝑐 1𝑜)) ∧ 𝑔:((𝐴 +𝑐 1𝑜) ∖ {(𝑓𝐴)})–1-1-onto𝐴)
3534pm2.21i 116 . . . . . . 7 (((1𝑜𝐴𝑓:𝒫 𝐴1-1-onto→(𝐴 +𝑐 1𝑜)) ∧ 𝑔:((𝐴 +𝑐 1𝑜) ∖ {(𝑓𝐴)})–1-1-onto𝐴) → ⊥)
3622, 35exlimddv 1903 . . . . . 6 ((1𝑜𝐴𝑓:𝒫 𝐴1-1-onto→(𝐴 +𝑐 1𝑜)) → ⊥)
3736ex 449 . . . . 5 (1𝑜𝐴 → (𝑓:𝒫 𝐴1-1-onto→(𝐴 +𝑐 1𝑜) → ⊥))
3837exlimdv 1901 . . . 4 (1𝑜𝐴 → (∃𝑓 𝑓:𝒫 𝐴1-1-onto→(𝐴 +𝑐 1𝑜) → ⊥))
3911, 38syl5 34 . . 3 (1𝑜𝐴 → ((𝐴 +𝑐 1𝑜) ≈ 𝒫 𝐴 → ⊥))
408, 39mtoi 190 . 2 (1𝑜𝐴 → ¬ (𝐴 +𝑐 1𝑜) ≈ 𝒫 𝐴)
41 brsdom 8020 . 2 ((𝐴 +𝑐 1𝑜) ≺ 𝒫 𝐴 ↔ ((𝐴 +𝑐 1𝑜) ≼ 𝒫 𝐴 ∧ ¬ (𝐴 +𝑐 1𝑜) ≈ 𝒫 𝐴))
427, 40, 41sylanbrc 699 1 (1𝑜𝐴 → (𝐴 +𝑐 1𝑜) ≺ 𝒫 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 383   = wceq 1523  wfal 1528  wex 1744  wcel 2030  wral 2941  Vcvv 3231  cdif 3604  wss 3607  c0 3948  ifcif 4119  𝒫 cpw 4191  {csn 4210   cuni 4468   class class class wbr 4685  {copab 4745  cmpt 4762   We wwe 5101   × cxp 5141  ccnv 5142  dom cdm 5143  cima 5146  ccom 5147  wf 5922  1-1-ontowf1o 5925  cfv 5926  (class class class)co 6690  1𝑜c1o 7598  2𝑜c2o 7599  cen 7994  cdom 7995  csdm 7996   +𝑐 ccda 9027
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-inf2 8576
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-fal 1529  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-se 5103  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-isom 5935  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-2o 7606  df-oadd 7609  df-er 7787  df-map 7901  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-oi 8456  df-card 8803  df-cda 9028
This theorem is referenced by:  finngch  9515  gchcda1  9516
  Copyright terms: Public domain W3C validator