![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > canth2 | Structured version Visualization version GIF version |
Description: Cantor's Theorem. No set is equinumerous to its power set. Specifically, any set has a cardinality (size) strictly less than the cardinality of its power set. For example, the cardinality of real numbers is the same as the cardinality of the power set of integers, so real numbers cannot be put into a one-to-one correspondence with integers. Theorem 23 of [Suppes] p. 97. For the function version, see canth 6751. This is Metamath 100 proof #63. (Contributed by NM, 7-Aug-1994.) |
Ref | Expression |
---|---|
canth2.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
canth2 | ⊢ 𝐴 ≺ 𝒫 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | canth2.1 | . . 3 ⊢ 𝐴 ∈ V | |
2 | 1 | pwex 4981 | . . 3 ⊢ 𝒫 𝐴 ∈ V |
3 | snelpwi 5040 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → {𝑥} ∈ 𝒫 𝐴) | |
4 | vex 3354 | . . . . . . 7 ⊢ 𝑥 ∈ V | |
5 | 4 | sneqr 4504 | . . . . . 6 ⊢ ({𝑥} = {𝑦} → 𝑥 = 𝑦) |
6 | sneq 4326 | . . . . . 6 ⊢ (𝑥 = 𝑦 → {𝑥} = {𝑦}) | |
7 | 5, 6 | impbii 199 | . . . . 5 ⊢ ({𝑥} = {𝑦} ↔ 𝑥 = 𝑦) |
8 | 7 | a1i 11 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → ({𝑥} = {𝑦} ↔ 𝑥 = 𝑦)) |
9 | 3, 8 | dom3 8153 | . . 3 ⊢ ((𝐴 ∈ V ∧ 𝒫 𝐴 ∈ V) → 𝐴 ≼ 𝒫 𝐴) |
10 | 1, 2, 9 | mp2an 672 | . 2 ⊢ 𝐴 ≼ 𝒫 𝐴 |
11 | 1 | canth 6751 | . . . . 5 ⊢ ¬ 𝑓:𝐴–onto→𝒫 𝐴 |
12 | f1ofo 6285 | . . . . 5 ⊢ (𝑓:𝐴–1-1-onto→𝒫 𝐴 → 𝑓:𝐴–onto→𝒫 𝐴) | |
13 | 11, 12 | mto 188 | . . . 4 ⊢ ¬ 𝑓:𝐴–1-1-onto→𝒫 𝐴 |
14 | 13 | nex 1879 | . . 3 ⊢ ¬ ∃𝑓 𝑓:𝐴–1-1-onto→𝒫 𝐴 |
15 | bren 8118 | . . 3 ⊢ (𝐴 ≈ 𝒫 𝐴 ↔ ∃𝑓 𝑓:𝐴–1-1-onto→𝒫 𝐴) | |
16 | 14, 15 | mtbir 312 | . 2 ⊢ ¬ 𝐴 ≈ 𝒫 𝐴 |
17 | brsdom 8132 | . 2 ⊢ (𝐴 ≺ 𝒫 𝐴 ↔ (𝐴 ≼ 𝒫 𝐴 ∧ ¬ 𝐴 ≈ 𝒫 𝐴)) | |
18 | 10, 16, 17 | mpbir2an 690 | 1 ⊢ 𝐴 ≺ 𝒫 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 196 ∧ wa 382 = wceq 1631 ∃wex 1852 ∈ wcel 2145 Vcvv 3351 𝒫 cpw 4297 {csn 4316 class class class wbr 4786 –onto→wfo 6029 –1-1-onto→wf1o 6030 ≈ cen 8106 ≼ cdom 8107 ≺ csdm 8108 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-sep 4915 ax-nul 4923 ax-pow 4974 ax-pr 5034 ax-un 7096 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 835 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-nul 4064 df-if 4226 df-pw 4299 df-sn 4317 df-pr 4319 df-op 4323 df-uni 4575 df-br 4787 df-opab 4847 df-mpt 4864 df-id 5157 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-en 8110 df-dom 8111 df-sdom 8112 |
This theorem is referenced by: canth2g 8270 r1sdom 8801 alephsucpw2 9134 dfac13 9166 pwsdompw 9228 numthcor 9518 alephexp1 9603 pwcfsdom 9607 cfpwsdom 9608 gchhar 9703 gchac 9705 inawinalem 9713 tskcard 9805 gruina 9842 grothac 9854 rpnnen 15162 rexpen 15163 rucALT 15165 rectbntr0 22855 |
Copyright terms: Public domain | W3C validator |