Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  calemes Structured version   Visualization version   GIF version

Theorem calemes 2580
 Description: "Calemes", one of the syllogisms of Aristotelian logic. All 𝜑 is 𝜓, and no 𝜓 is 𝜒, therefore no 𝜒 is 𝜑. (In Aristotelian notation, AEE-4: PaM and MeS therefore SeP.) (Contributed by David A. Wheeler, 28-Aug-2016.) (Revised by David A. Wheeler, 2-Sep-2016.)
Hypotheses
Ref Expression
calemes.maj 𝑥(𝜑𝜓)
calemes.min 𝑥(𝜓 → ¬ 𝜒)
Assertion
Ref Expression
calemes 𝑥(𝜒 → ¬ 𝜑)

Proof of Theorem calemes
StepHypRef Expression
1 calemes.min . . . . 5 𝑥(𝜓 → ¬ 𝜒)
21spi 2052 . . . 4 (𝜓 → ¬ 𝜒)
32con2i 134 . . 3 (𝜒 → ¬ 𝜓)
4 calemes.maj . . . 4 𝑥(𝜑𝜓)
54spi 2052 . . 3 (𝜑𝜓)
63, 5nsyl 135 . 2 (𝜒 → ¬ 𝜑)
76ax-gen 1719 1 𝑥(𝜒 → ¬ 𝜑)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4  ∀wal 1478 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-12 2044 This theorem depends on definitions:  df-bi 197  df-ex 1702 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator