MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  c1lip2 Structured version   Visualization version   GIF version

Theorem c1lip2 23806
Description: C1 functions are Lipschitz continuous on closed intervals. (Contributed by Stefan O'Rear, 16-Nov-2014.) (Revised by Stefan O'Rear, 6-May-2015.)
Hypotheses
Ref Expression
c1lip2.a (𝜑𝐴 ∈ ℝ)
c1lip2.b (𝜑𝐵 ∈ ℝ)
c1lip2.f (𝜑𝐹 ∈ ((Cn‘ℝ)‘1))
c1lip2.rn (𝜑 → ran 𝐹 ⊆ ℝ)
c1lip2.dm (𝜑 → (𝐴[,]𝐵) ⊆ dom 𝐹)
Assertion
Ref Expression
c1lip2 (𝜑 → ∃𝑘 ∈ ℝ ∀𝑥 ∈ (𝐴[,]𝐵)∀𝑦 ∈ (𝐴[,]𝐵)(abs‘((𝐹𝑦) − (𝐹𝑥))) ≤ (𝑘 · (abs‘(𝑦𝑥))))
Distinct variable groups:   𝜑,𝑥,𝑦,𝑘   𝑥,𝐴,𝑦,𝑘   𝑥,𝐵,𝑦,𝑘   𝑥,𝐹,𝑦,𝑘

Proof of Theorem c1lip2
StepHypRef Expression
1 c1lip2.a . 2 (𝜑𝐴 ∈ ℝ)
2 c1lip2.b . 2 (𝜑𝐵 ∈ ℝ)
3 c1lip2.f . . 3 (𝜑𝐹 ∈ ((Cn‘ℝ)‘1))
4 ax-resscn 10031 . . . . 5 ℝ ⊆ ℂ
5 1nn0 11346 . . . . 5 1 ∈ ℕ0
6 elcpn 23742 . . . . 5 ((ℝ ⊆ ℂ ∧ 1 ∈ ℕ0) → (𝐹 ∈ ((Cn‘ℝ)‘1) ↔ (𝐹 ∈ (ℂ ↑pm ℝ) ∧ ((ℝ D𝑛 𝐹)‘1) ∈ (dom 𝐹cn→ℂ))))
74, 5, 6mp2an 708 . . . 4 (𝐹 ∈ ((Cn‘ℝ)‘1) ↔ (𝐹 ∈ (ℂ ↑pm ℝ) ∧ ((ℝ D𝑛 𝐹)‘1) ∈ (dom 𝐹cn→ℂ)))
87simplbi 475 . . 3 (𝐹 ∈ ((Cn‘ℝ)‘1) → 𝐹 ∈ (ℂ ↑pm ℝ))
93, 8syl 17 . 2 (𝜑𝐹 ∈ (ℂ ↑pm ℝ))
10 c1lip2.dm . . 3 (𝜑 → (𝐴[,]𝐵) ⊆ dom 𝐹)
11 pmfun 7919 . . . . . . . . 9 (𝐹 ∈ (ℂ ↑pm ℝ) → Fun 𝐹)
129, 11syl 17 . . . . . . . 8 (𝜑 → Fun 𝐹)
13 funfn 5956 . . . . . . . 8 (Fun 𝐹𝐹 Fn dom 𝐹)
1412, 13sylib 208 . . . . . . 7 (𝜑𝐹 Fn dom 𝐹)
15 c1lip2.rn . . . . . . 7 (𝜑 → ran 𝐹 ⊆ ℝ)
16 df-f 5930 . . . . . . 7 (𝐹:dom 𝐹⟶ℝ ↔ (𝐹 Fn dom 𝐹 ∧ ran 𝐹 ⊆ ℝ))
1714, 15, 16sylanbrc 699 . . . . . 6 (𝜑𝐹:dom 𝐹⟶ℝ)
18 cnex 10055 . . . . . . . . 9 ℂ ∈ V
19 reex 10065 . . . . . . . . 9 ℝ ∈ V
2018, 19elpm2 7931 . . . . . . . 8 (𝐹 ∈ (ℂ ↑pm ℝ) ↔ (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℝ))
2120simprbi 479 . . . . . . 7 (𝐹 ∈ (ℂ ↑pm ℝ) → dom 𝐹 ⊆ ℝ)
229, 21syl 17 . . . . . 6 (𝜑 → dom 𝐹 ⊆ ℝ)
23 dvfre 23759 . . . . . 6 ((𝐹:dom 𝐹⟶ℝ ∧ dom 𝐹 ⊆ ℝ) → (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℝ)
2417, 22, 23syl2anc 694 . . . . 5 (𝜑 → (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℝ)
25 0p1e1 11170 . . . . . . . . . . 11 (0 + 1) = 1
2625fveq2i 6232 . . . . . . . . . 10 ((ℝ D𝑛 𝐹)‘(0 + 1)) = ((ℝ D𝑛 𝐹)‘1)
27 0nn0 11345 . . . . . . . . . . . 12 0 ∈ ℕ0
28 dvnp1 23733 . . . . . . . . . . . 12 ((ℝ ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm ℝ) ∧ 0 ∈ ℕ0) → ((ℝ D𝑛 𝐹)‘(0 + 1)) = (ℝ D ((ℝ D𝑛 𝐹)‘0)))
294, 27, 28mp3an13 1455 . . . . . . . . . . 11 (𝐹 ∈ (ℂ ↑pm ℝ) → ((ℝ D𝑛 𝐹)‘(0 + 1)) = (ℝ D ((ℝ D𝑛 𝐹)‘0)))
309, 29syl 17 . . . . . . . . . 10 (𝜑 → ((ℝ D𝑛 𝐹)‘(0 + 1)) = (ℝ D ((ℝ D𝑛 𝐹)‘0)))
3126, 30syl5eqr 2699 . . . . . . . . 9 (𝜑 → ((ℝ D𝑛 𝐹)‘1) = (ℝ D ((ℝ D𝑛 𝐹)‘0)))
32 dvn0 23732 . . . . . . . . . . 11 ((ℝ ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm ℝ)) → ((ℝ D𝑛 𝐹)‘0) = 𝐹)
334, 9, 32sylancr 696 . . . . . . . . . 10 (𝜑 → ((ℝ D𝑛 𝐹)‘0) = 𝐹)
3433oveq2d 6706 . . . . . . . . 9 (𝜑 → (ℝ D ((ℝ D𝑛 𝐹)‘0)) = (ℝ D 𝐹))
3531, 34eqtrd 2685 . . . . . . . 8 (𝜑 → ((ℝ D𝑛 𝐹)‘1) = (ℝ D 𝐹))
367simprbi 479 . . . . . . . . 9 (𝐹 ∈ ((Cn‘ℝ)‘1) → ((ℝ D𝑛 𝐹)‘1) ∈ (dom 𝐹cn→ℂ))
373, 36syl 17 . . . . . . . 8 (𝜑 → ((ℝ D𝑛 𝐹)‘1) ∈ (dom 𝐹cn→ℂ))
3835, 37eqeltrrd 2731 . . . . . . 7 (𝜑 → (ℝ D 𝐹) ∈ (dom 𝐹cn→ℂ))
39 cncff 22743 . . . . . . 7 ((ℝ D 𝐹) ∈ (dom 𝐹cn→ℂ) → (ℝ D 𝐹):dom 𝐹⟶ℂ)
40 fdm 6089 . . . . . . 7 ((ℝ D 𝐹):dom 𝐹⟶ℂ → dom (ℝ D 𝐹) = dom 𝐹)
4138, 39, 403syl 18 . . . . . 6 (𝜑 → dom (ℝ D 𝐹) = dom 𝐹)
4241feq2d 6069 . . . . 5 (𝜑 → ((ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℝ ↔ (ℝ D 𝐹):dom 𝐹⟶ℝ))
4324, 42mpbid 222 . . . 4 (𝜑 → (ℝ D 𝐹):dom 𝐹⟶ℝ)
44 cncffvrn 22748 . . . . 5 ((ℝ ⊆ ℂ ∧ (ℝ D 𝐹) ∈ (dom 𝐹cn→ℂ)) → ((ℝ D 𝐹) ∈ (dom 𝐹cn→ℝ) ↔ (ℝ D 𝐹):dom 𝐹⟶ℝ))
454, 38, 44sylancr 696 . . . 4 (𝜑 → ((ℝ D 𝐹) ∈ (dom 𝐹cn→ℝ) ↔ (ℝ D 𝐹):dom 𝐹⟶ℝ))
4643, 45mpbird 247 . . 3 (𝜑 → (ℝ D 𝐹) ∈ (dom 𝐹cn→ℝ))
47 rescncf 22747 . . 3 ((𝐴[,]𝐵) ⊆ dom 𝐹 → ((ℝ D 𝐹) ∈ (dom 𝐹cn→ℝ) → ((ℝ D 𝐹) ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℝ)))
4810, 46, 47sylc 65 . 2 (𝜑 → ((ℝ D 𝐹) ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℝ))
4919prid1 4329 . . . . . . . . 9 ℝ ∈ {ℝ, ℂ}
50 1eluzge0 11770 . . . . . . . . 9 1 ∈ (ℤ‘0)
51 cpnord 23743 . . . . . . . . 9 ((ℝ ∈ {ℝ, ℂ} ∧ 0 ∈ ℕ0 ∧ 1 ∈ (ℤ‘0)) → ((Cn‘ℝ)‘1) ⊆ ((Cn‘ℝ)‘0))
5249, 27, 50, 51mp3an 1464 . . . . . . . 8 ((Cn‘ℝ)‘1) ⊆ ((Cn‘ℝ)‘0)
5352, 3sseldi 3634 . . . . . . 7 (𝜑𝐹 ∈ ((Cn‘ℝ)‘0))
54 elcpn 23742 . . . . . . . . 9 ((ℝ ⊆ ℂ ∧ 0 ∈ ℕ0) → (𝐹 ∈ ((Cn‘ℝ)‘0) ↔ (𝐹 ∈ (ℂ ↑pm ℝ) ∧ ((ℝ D𝑛 𝐹)‘0) ∈ (dom 𝐹cn→ℂ))))
554, 27, 54mp2an 708 . . . . . . . 8 (𝐹 ∈ ((Cn‘ℝ)‘0) ↔ (𝐹 ∈ (ℂ ↑pm ℝ) ∧ ((ℝ D𝑛 𝐹)‘0) ∈ (dom 𝐹cn→ℂ)))
5655simprbi 479 . . . . . . 7 (𝐹 ∈ ((Cn‘ℝ)‘0) → ((ℝ D𝑛 𝐹)‘0) ∈ (dom 𝐹cn→ℂ))
5753, 56syl 17 . . . . . 6 (𝜑 → ((ℝ D𝑛 𝐹)‘0) ∈ (dom 𝐹cn→ℂ))
5833, 57eqeltrrd 2731 . . . . 5 (𝜑𝐹 ∈ (dom 𝐹cn→ℂ))
59 cncffvrn 22748 . . . . 5 ((ℝ ⊆ ℂ ∧ 𝐹 ∈ (dom 𝐹cn→ℂ)) → (𝐹 ∈ (dom 𝐹cn→ℝ) ↔ 𝐹:dom 𝐹⟶ℝ))
604, 58, 59sylancr 696 . . . 4 (𝜑 → (𝐹 ∈ (dom 𝐹cn→ℝ) ↔ 𝐹:dom 𝐹⟶ℝ))
6117, 60mpbird 247 . . 3 (𝜑𝐹 ∈ (dom 𝐹cn→ℝ))
62 rescncf 22747 . . 3 ((𝐴[,]𝐵) ⊆ dom 𝐹 → (𝐹 ∈ (dom 𝐹cn→ℝ) → (𝐹 ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℝ)))
6310, 61, 62sylc 65 . 2 (𝜑 → (𝐹 ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℝ))
641, 2, 9, 48, 63c1lip1 23805 1 (𝜑 → ∃𝑘 ∈ ℝ ∀𝑥 ∈ (𝐴[,]𝐵)∀𝑦 ∈ (𝐴[,]𝐵)(abs‘((𝐹𝑦) − (𝐹𝑥))) ≤ (𝑘 · (abs‘(𝑦𝑥))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383   = wceq 1523  wcel 2030  wral 2941  wrex 2942  wss 3607  {cpr 4212   class class class wbr 4685  dom cdm 5143  ran crn 5144  cres 5145  Fun wfun 5920   Fn wfn 5921  wf 5922  cfv 5926  (class class class)co 6690  pm cpm 7900  cc 9972  cr 9973  0cc0 9974  1c1 9975   + caddc 9977   · cmul 9979  cle 10113  cmin 10304  0cn0 11330  cuz 11725  [,]cicc 12216  abscabs 14018  cnccncf 22726   D cdv 23672   D𝑛 cdvn 23673  Cnccpn 23674
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-inf2 8576  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052  ax-addf 10053  ax-mulf 10054
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-iin 4555  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-se 5103  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-isom 5935  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-of 6939  df-om 7108  df-1st 7210  df-2nd 7211  df-supp 7341  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-2o 7606  df-oadd 7609  df-er 7787  df-map 7901  df-pm 7902  df-ixp 7951  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-fsupp 8317  df-fi 8358  df-sup 8389  df-inf 8390  df-oi 8456  df-card 8803  df-cda 9028  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-4 11119  df-5 11120  df-6 11121  df-7 11122  df-8 11123  df-9 11124  df-n0 11331  df-z 11416  df-dec 11532  df-uz 11726  df-q 11827  df-rp 11871  df-xneg 11984  df-xadd 11985  df-xmul 11986  df-ioo 12217  df-ico 12219  df-icc 12220  df-fz 12365  df-fzo 12505  df-seq 12842  df-exp 12901  df-hash 13158  df-cj 13883  df-re 13884  df-im 13885  df-sqrt 14019  df-abs 14020  df-struct 15906  df-ndx 15907  df-slot 15908  df-base 15910  df-sets 15911  df-ress 15912  df-plusg 16001  df-mulr 16002  df-starv 16003  df-sca 16004  df-vsca 16005  df-ip 16006  df-tset 16007  df-ple 16008  df-ds 16011  df-unif 16012  df-hom 16013  df-cco 16014  df-rest 16130  df-topn 16131  df-0g 16149  df-gsum 16150  df-topgen 16151  df-pt 16152  df-prds 16155  df-xrs 16209  df-qtop 16214  df-imas 16215  df-xps 16217  df-mre 16293  df-mrc 16294  df-acs 16296  df-mgm 17289  df-sgrp 17331  df-mnd 17342  df-submnd 17383  df-mulg 17588  df-cntz 17796  df-cmn 18241  df-psmet 19786  df-xmet 19787  df-met 19788  df-bl 19789  df-mopn 19790  df-fbas 19791  df-fg 19792  df-cnfld 19795  df-top 20747  df-topon 20764  df-topsp 20785  df-bases 20798  df-cld 20871  df-ntr 20872  df-cls 20873  df-nei 20950  df-lp 20988  df-perf 20989  df-cn 21079  df-cnp 21080  df-haus 21167  df-cmp 21238  df-tx 21413  df-hmeo 21606  df-fil 21697  df-fm 21789  df-flim 21790  df-flf 21791  df-xms 22172  df-ms 22173  df-tms 22174  df-cncf 22728  df-limc 23675  df-dv 23676  df-dvn 23677  df-cpn 23678
This theorem is referenced by:  c1lip3  23807
  Copyright terms: Public domain W3C validator