Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  c1lip2 Structured version   Visualization version   GIF version

Theorem c1lip2 23806
 Description: C1 functions are Lipschitz continuous on closed intervals. (Contributed by Stefan O'Rear, 16-Nov-2014.) (Revised by Stefan O'Rear, 6-May-2015.)
Hypotheses
Ref Expression
c1lip2.a (𝜑𝐴 ∈ ℝ)
c1lip2.b (𝜑𝐵 ∈ ℝ)
c1lip2.f (𝜑𝐹 ∈ ((Cn‘ℝ)‘1))
c1lip2.rn (𝜑 → ran 𝐹 ⊆ ℝ)
c1lip2.dm (𝜑 → (𝐴[,]𝐵) ⊆ dom 𝐹)
Assertion
Ref Expression
c1lip2 (𝜑 → ∃𝑘 ∈ ℝ ∀𝑥 ∈ (𝐴[,]𝐵)∀𝑦 ∈ (𝐴[,]𝐵)(abs‘((𝐹𝑦) − (𝐹𝑥))) ≤ (𝑘 · (abs‘(𝑦𝑥))))
Distinct variable groups:   𝜑,𝑥,𝑦,𝑘   𝑥,𝐴,𝑦,𝑘   𝑥,𝐵,𝑦,𝑘   𝑥,𝐹,𝑦,𝑘

Proof of Theorem c1lip2
StepHypRef Expression
1 c1lip2.a . 2 (𝜑𝐴 ∈ ℝ)
2 c1lip2.b . 2 (𝜑𝐵 ∈ ℝ)
3 c1lip2.f . . 3 (𝜑𝐹 ∈ ((Cn‘ℝ)‘1))
4 ax-resscn 10031 . . . . 5 ℝ ⊆ ℂ
5 1nn0 11346 . . . . 5 1 ∈ ℕ0
6 elcpn 23742 . . . . 5 ((ℝ ⊆ ℂ ∧ 1 ∈ ℕ0) → (𝐹 ∈ ((Cn‘ℝ)‘1) ↔ (𝐹 ∈ (ℂ ↑pm ℝ) ∧ ((ℝ D𝑛 𝐹)‘1) ∈ (dom 𝐹cn→ℂ))))
74, 5, 6mp2an 708 . . . 4 (𝐹 ∈ ((Cn‘ℝ)‘1) ↔ (𝐹 ∈ (ℂ ↑pm ℝ) ∧ ((ℝ D𝑛 𝐹)‘1) ∈ (dom 𝐹cn→ℂ)))
87simplbi 475 . . 3 (𝐹 ∈ ((Cn‘ℝ)‘1) → 𝐹 ∈ (ℂ ↑pm ℝ))
93, 8syl 17 . 2 (𝜑𝐹 ∈ (ℂ ↑pm ℝ))
10 c1lip2.dm . . 3 (𝜑 → (𝐴[,]𝐵) ⊆ dom 𝐹)
11 pmfun 7919 . . . . . . . . 9 (𝐹 ∈ (ℂ ↑pm ℝ) → Fun 𝐹)
129, 11syl 17 . . . . . . . 8 (𝜑 → Fun 𝐹)
13 funfn 5956 . . . . . . . 8 (Fun 𝐹𝐹 Fn dom 𝐹)
1412, 13sylib 208 . . . . . . 7 (𝜑𝐹 Fn dom 𝐹)
15 c1lip2.rn . . . . . . 7 (𝜑 → ran 𝐹 ⊆ ℝ)
16 df-f 5930 . . . . . . 7 (𝐹:dom 𝐹⟶ℝ ↔ (𝐹 Fn dom 𝐹 ∧ ran 𝐹 ⊆ ℝ))
1714, 15, 16sylanbrc 699 . . . . . 6 (𝜑𝐹:dom 𝐹⟶ℝ)
18 cnex 10055 . . . . . . . . 9 ℂ ∈ V
19 reex 10065 . . . . . . . . 9 ℝ ∈ V
2018, 19elpm2 7931 . . . . . . . 8 (𝐹 ∈ (ℂ ↑pm ℝ) ↔ (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℝ))
2120simprbi 479 . . . . . . 7 (𝐹 ∈ (ℂ ↑pm ℝ) → dom 𝐹 ⊆ ℝ)
229, 21syl 17 . . . . . 6 (𝜑 → dom 𝐹 ⊆ ℝ)
23 dvfre 23759 . . . . . 6 ((𝐹:dom 𝐹⟶ℝ ∧ dom 𝐹 ⊆ ℝ) → (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℝ)
2417, 22, 23syl2anc 694 . . . . 5 (𝜑 → (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℝ)
25 0p1e1 11170 . . . . . . . . . . 11 (0 + 1) = 1
2625fveq2i 6232 . . . . . . . . . 10 ((ℝ D𝑛 𝐹)‘(0 + 1)) = ((ℝ D𝑛 𝐹)‘1)
27 0nn0 11345 . . . . . . . . . . . 12 0 ∈ ℕ0
28 dvnp1 23733 . . . . . . . . . . . 12 ((ℝ ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm ℝ) ∧ 0 ∈ ℕ0) → ((ℝ D𝑛 𝐹)‘(0 + 1)) = (ℝ D ((ℝ D𝑛 𝐹)‘0)))
294, 27, 28mp3an13 1455 . . . . . . . . . . 11 (𝐹 ∈ (ℂ ↑pm ℝ) → ((ℝ D𝑛 𝐹)‘(0 + 1)) = (ℝ D ((ℝ D𝑛 𝐹)‘0)))
309, 29syl 17 . . . . . . . . . 10 (𝜑 → ((ℝ D𝑛 𝐹)‘(0 + 1)) = (ℝ D ((ℝ D𝑛 𝐹)‘0)))
3126, 30syl5eqr 2699 . . . . . . . . 9 (𝜑 → ((ℝ D𝑛 𝐹)‘1) = (ℝ D ((ℝ D𝑛 𝐹)‘0)))
32 dvn0 23732 . . . . . . . . . . 11 ((ℝ ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm ℝ)) → ((ℝ D𝑛 𝐹)‘0) = 𝐹)
334, 9, 32sylancr 696 . . . . . . . . . 10 (𝜑 → ((ℝ D𝑛 𝐹)‘0) = 𝐹)
3433oveq2d 6706 . . . . . . . . 9 (𝜑 → (ℝ D ((ℝ D𝑛 𝐹)‘0)) = (ℝ D 𝐹))
3531, 34eqtrd 2685 . . . . . . . 8 (𝜑 → ((ℝ D𝑛 𝐹)‘1) = (ℝ D 𝐹))
367simprbi 479 . . . . . . . . 9 (𝐹 ∈ ((Cn‘ℝ)‘1) → ((ℝ D𝑛 𝐹)‘1) ∈ (dom 𝐹cn→ℂ))
373, 36syl 17 . . . . . . . 8 (𝜑 → ((ℝ D𝑛 𝐹)‘1) ∈ (dom 𝐹cn→ℂ))
3835, 37eqeltrrd 2731 . . . . . . 7 (𝜑 → (ℝ D 𝐹) ∈ (dom 𝐹cn→ℂ))
39 cncff 22743 . . . . . . 7 ((ℝ D 𝐹) ∈ (dom 𝐹cn→ℂ) → (ℝ D 𝐹):dom 𝐹⟶ℂ)
40 fdm 6089 . . . . . . 7 ((ℝ D 𝐹):dom 𝐹⟶ℂ → dom (ℝ D 𝐹) = dom 𝐹)
4138, 39, 403syl 18 . . . . . 6 (𝜑 → dom (ℝ D 𝐹) = dom 𝐹)
4241feq2d 6069 . . . . 5 (𝜑 → ((ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℝ ↔ (ℝ D 𝐹):dom 𝐹⟶ℝ))
4324, 42mpbid 222 . . . 4 (𝜑 → (ℝ D 𝐹):dom 𝐹⟶ℝ)
44 cncffvrn 22748 . . . . 5 ((ℝ ⊆ ℂ ∧ (ℝ D 𝐹) ∈ (dom 𝐹cn→ℂ)) → ((ℝ D 𝐹) ∈ (dom 𝐹cn→ℝ) ↔ (ℝ D 𝐹):dom 𝐹⟶ℝ))
454, 38, 44sylancr 696 . . . 4 (𝜑 → ((ℝ D 𝐹) ∈ (dom 𝐹cn→ℝ) ↔ (ℝ D 𝐹):dom 𝐹⟶ℝ))
4643, 45mpbird 247 . . 3 (𝜑 → (ℝ D 𝐹) ∈ (dom 𝐹cn→ℝ))
47 rescncf 22747 . . 3 ((𝐴[,]𝐵) ⊆ dom 𝐹 → ((ℝ D 𝐹) ∈ (dom 𝐹cn→ℝ) → ((ℝ D 𝐹) ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℝ)))
4810, 46, 47sylc 65 . 2 (𝜑 → ((ℝ D 𝐹) ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℝ))
4919prid1 4329 . . . . . . . . 9 ℝ ∈ {ℝ, ℂ}
50 1eluzge0 11770 . . . . . . . . 9 1 ∈ (ℤ‘0)
51 cpnord 23743 . . . . . . . . 9 ((ℝ ∈ {ℝ, ℂ} ∧ 0 ∈ ℕ0 ∧ 1 ∈ (ℤ‘0)) → ((Cn‘ℝ)‘1) ⊆ ((Cn‘ℝ)‘0))
5249, 27, 50, 51mp3an 1464 . . . . . . . 8 ((Cn‘ℝ)‘1) ⊆ ((Cn‘ℝ)‘0)
5352, 3sseldi 3634 . . . . . . 7 (𝜑𝐹 ∈ ((Cn‘ℝ)‘0))
54 elcpn 23742 . . . . . . . . 9 ((ℝ ⊆ ℂ ∧ 0 ∈ ℕ0) → (𝐹 ∈ ((Cn‘ℝ)‘0) ↔ (𝐹 ∈ (ℂ ↑pm ℝ) ∧ ((ℝ D𝑛 𝐹)‘0) ∈ (dom 𝐹cn→ℂ))))
554, 27, 54mp2an 708 . . . . . . . 8 (𝐹 ∈ ((Cn‘ℝ)‘0) ↔ (𝐹 ∈ (ℂ ↑pm ℝ) ∧ ((ℝ D𝑛 𝐹)‘0) ∈ (dom 𝐹cn→ℂ)))
5655simprbi 479 . . . . . . 7 (𝐹 ∈ ((Cn‘ℝ)‘0) → ((ℝ D𝑛 𝐹)‘0) ∈ (dom 𝐹cn→ℂ))
5753, 56syl 17 . . . . . 6 (𝜑 → ((ℝ D𝑛 𝐹)‘0) ∈ (dom 𝐹cn→ℂ))
5833, 57eqeltrrd 2731 . . . . 5 (𝜑𝐹 ∈ (dom 𝐹cn→ℂ))
59 cncffvrn 22748 . . . . 5 ((ℝ ⊆ ℂ ∧ 𝐹 ∈ (dom 𝐹cn→ℂ)) → (𝐹 ∈ (dom 𝐹cn→ℝ) ↔ 𝐹:dom 𝐹⟶ℝ))
604, 58, 59sylancr 696 . . . 4 (𝜑 → (𝐹 ∈ (dom 𝐹cn→ℝ) ↔ 𝐹:dom 𝐹⟶ℝ))
6117, 60mpbird 247 . . 3 (𝜑𝐹 ∈ (dom 𝐹cn→ℝ))
62 rescncf 22747 . . 3 ((𝐴[,]𝐵) ⊆ dom 𝐹 → (𝐹 ∈ (dom 𝐹cn→ℝ) → (𝐹 ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℝ)))
6310, 61, 62sylc 65 . 2 (𝜑 → (𝐹 ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℝ))
641, 2, 9, 48, 63c1lip1 23805 1 (𝜑 → ∃𝑘 ∈ ℝ ∀𝑥 ∈ (𝐴[,]𝐵)∀𝑦 ∈ (𝐴[,]𝐵)(abs‘((𝐹𝑦) − (𝐹𝑥))) ≤ (𝑘 · (abs‘(𝑦𝑥))))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 383   = wceq 1523   ∈ wcel 2030  ∀wral 2941  ∃wrex 2942   ⊆ wss 3607  {cpr 4212   class class class wbr 4685  dom cdm 5143  ran crn 5144   ↾ cres 5145  Fun wfun 5920   Fn wfn 5921  ⟶wf 5922  ‘cfv 5926  (class class class)co 6690   ↑pm cpm 7900  ℂcc 9972  ℝcr 9973  0cc0 9974  1c1 9975   + caddc 9977   · cmul 9979   ≤ cle 10113   − cmin 10304  ℕ0cn0 11330  ℤ≥cuz 11725  [,]cicc 12216  abscabs 14018  –cn→ccncf 22726   D cdv 23672   D𝑛 cdvn 23673  Cnccpn 23674 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-inf2 8576  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052  ax-addf 10053  ax-mulf 10054 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-iin 4555  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-se 5103  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-isom 5935  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-of 6939  df-om 7108  df-1st 7210  df-2nd 7211  df-supp 7341  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-2o 7606  df-oadd 7609  df-er 7787  df-map 7901  df-pm 7902  df-ixp 7951  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-fsupp 8317  df-fi 8358  df-sup 8389  df-inf 8390  df-oi 8456  df-card 8803  df-cda 9028  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-4 11119  df-5 11120  df-6 11121  df-7 11122  df-8 11123  df-9 11124  df-n0 11331  df-z 11416  df-dec 11532  df-uz 11726  df-q 11827  df-rp 11871  df-xneg 11984  df-xadd 11985  df-xmul 11986  df-ioo 12217  df-ico 12219  df-icc 12220  df-fz 12365  df-fzo 12505  df-seq 12842  df-exp 12901  df-hash 13158  df-cj 13883  df-re 13884  df-im 13885  df-sqrt 14019  df-abs 14020  df-struct 15906  df-ndx 15907  df-slot 15908  df-base 15910  df-sets 15911  df-ress 15912  df-plusg 16001  df-mulr 16002  df-starv 16003  df-sca 16004  df-vsca 16005  df-ip 16006  df-tset 16007  df-ple 16008  df-ds 16011  df-unif 16012  df-hom 16013  df-cco 16014  df-rest 16130  df-topn 16131  df-0g 16149  df-gsum 16150  df-topgen 16151  df-pt 16152  df-prds 16155  df-xrs 16209  df-qtop 16214  df-imas 16215  df-xps 16217  df-mre 16293  df-mrc 16294  df-acs 16296  df-mgm 17289  df-sgrp 17331  df-mnd 17342  df-submnd 17383  df-mulg 17588  df-cntz 17796  df-cmn 18241  df-psmet 19786  df-xmet 19787  df-met 19788  df-bl 19789  df-mopn 19790  df-fbas 19791  df-fg 19792  df-cnfld 19795  df-top 20747  df-topon 20764  df-topsp 20785  df-bases 20798  df-cld 20871  df-ntr 20872  df-cls 20873  df-nei 20950  df-lp 20988  df-perf 20989  df-cn 21079  df-cnp 21080  df-haus 21167  df-cmp 21238  df-tx 21413  df-hmeo 21606  df-fil 21697  df-fm 21789  df-flim 21790  df-flf 21791  df-xms 22172  df-ms 22173  df-tms 22174  df-cncf 22728  df-limc 23675  df-dv 23676  df-dvn 23677  df-cpn 23678 This theorem is referenced by:  c1lip3  23807
 Copyright terms: Public domain W3C validator