Step | Hyp | Ref
| Expression |
1 | | mndmgm 17508 |
. . . . 5
⊢ (𝑆 ∈ Mnd → 𝑆 ∈ Mgm) |
2 | 1 | anim1i 602 |
. . . 4
⊢ ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm) → (𝑆 ∈ Mgm ∧ 𝑇 ∈ Mgm)) |
3 | 2 | 3adant3 1126 |
. . 3
⊢ ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm ∧
(♯‘𝐵) = 1)
→ (𝑆 ∈ Mgm ∧
𝑇 ∈
Mgm)) |
4 | 3 | ancomd 453 |
. 2
⊢ ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm ∧
(♯‘𝐵) = 1)
→ (𝑇 ∈ Mgm ∧
𝑆 ∈
Mgm)) |
5 | | zrrhm.b |
. . . . . 6
⊢ 𝐵 = (Base‘𝑇) |
6 | | fvex 6342 |
. . . . . 6
⊢
(Base‘𝑇)
∈ V |
7 | 5, 6 | eqeltri 2846 |
. . . . 5
⊢ 𝐵 ∈ V |
8 | | hash1snb 13409 |
. . . . 5
⊢ (𝐵 ∈ V →
((♯‘𝐵) = 1
↔ ∃𝑏 𝐵 = {𝑏})) |
9 | 7, 8 | ax-mp 5 |
. . . 4
⊢
((♯‘𝐵) =
1 ↔ ∃𝑏 𝐵 = {𝑏}) |
10 | | eqid 2771 |
. . . . . . . . . . . 12
⊢
(Base‘𝑆) =
(Base‘𝑆) |
11 | | zrrhm.0 |
. . . . . . . . . . . 12
⊢ 0 =
(0g‘𝑆) |
12 | 10, 11 | mndidcl 17516 |
. . . . . . . . . . 11
⊢ (𝑆 ∈ Mnd → 0 ∈
(Base‘𝑆)) |
13 | 12 | adantr 466 |
. . . . . . . . . 10
⊢ ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm) → 0 ∈
(Base‘𝑆)) |
14 | 13 | adantr 466 |
. . . . . . . . 9
⊢ (((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm) ∧ 𝐵 = {𝑏}) → 0 ∈ (Base‘𝑆)) |
15 | 14 | adantr 466 |
. . . . . . . 8
⊢ ((((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm) ∧ 𝐵 = {𝑏}) ∧ 𝑥 ∈ 𝐵) → 0 ∈ (Base‘𝑆)) |
16 | | zrrhm.h |
. . . . . . . 8
⊢ 𝐻 = (𝑥 ∈ 𝐵 ↦ 0 ) |
17 | 15, 16 | fmptd 6527 |
. . . . . . 7
⊢ (((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm) ∧ 𝐵 = {𝑏}) → 𝐻:𝐵⟶(Base‘𝑆)) |
18 | 16 | a1i 11 |
. . . . . . . . . 10
⊢ (((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm) ∧ 𝐵 = {𝑏}) → 𝐻 = (𝑥 ∈ 𝐵 ↦ 0 )) |
19 | | eqidd 2772 |
. . . . . . . . . 10
⊢ ((((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm) ∧ 𝐵 = {𝑏}) ∧ 𝑥 = 𝑏) → 0 = 0 ) |
20 | | vsnid 4348 |
. . . . . . . . . . . . 13
⊢ 𝑏 ∈ {𝑏} |
21 | 20 | a1i 11 |
. . . . . . . . . . . 12
⊢ (𝐵 = {𝑏} → 𝑏 ∈ {𝑏}) |
22 | | eleq2 2839 |
. . . . . . . . . . . 12
⊢ (𝐵 = {𝑏} → (𝑏 ∈ 𝐵 ↔ 𝑏 ∈ {𝑏})) |
23 | 21, 22 | mpbird 247 |
. . . . . . . . . . 11
⊢ (𝐵 = {𝑏} → 𝑏 ∈ 𝐵) |
24 | 23 | adantl 467 |
. . . . . . . . . 10
⊢ (((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm) ∧ 𝐵 = {𝑏}) → 𝑏 ∈ 𝐵) |
25 | 18, 19, 24, 14 | fvmptd 6430 |
. . . . . . . . 9
⊢ (((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm) ∧ 𝐵 = {𝑏}) → (𝐻‘𝑏) = 0 ) |
26 | | simpr 471 |
. . . . . . . . . . 11
⊢ ((((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm) ∧ 𝐵 = {𝑏}) ∧ (𝐻‘𝑏) = 0 ) → (𝐻‘𝑏) = 0 ) |
27 | 26, 26 | oveq12d 6811 |
. . . . . . . . . 10
⊢ ((((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm) ∧ 𝐵 = {𝑏}) ∧ (𝐻‘𝑏) = 0 ) → ((𝐻‘𝑏)(+g‘𝑆)(𝐻‘𝑏)) = ( 0 (+g‘𝑆) 0 )) |
28 | | eqid 2771 |
. . . . . . . . . . . . . . 15
⊢
(+g‘𝑆) = (+g‘𝑆) |
29 | 10, 28, 11 | mndlid 17519 |
. . . . . . . . . . . . . 14
⊢ ((𝑆 ∈ Mnd ∧ 0 ∈
(Base‘𝑆)) → (
0
(+g‘𝑆)
0 ) =
0
) |
30 | 12, 29 | mpdan 667 |
. . . . . . . . . . . . 13
⊢ (𝑆 ∈ Mnd → ( 0
(+g‘𝑆)
0 ) =
0
) |
31 | 30 | adantr 466 |
. . . . . . . . . . . 12
⊢ ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm) → ( 0
(+g‘𝑆)
0 ) =
0
) |
32 | 31 | adantr 466 |
. . . . . . . . . . 11
⊢ (((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm) ∧ 𝐵 = {𝑏}) → ( 0 (+g‘𝑆) 0 ) = 0 ) |
33 | 32 | adantr 466 |
. . . . . . . . . 10
⊢ ((((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm) ∧ 𝐵 = {𝑏}) ∧ (𝐻‘𝑏) = 0 ) → ( 0
(+g‘𝑆)
0 ) =
0
) |
34 | | simpr 471 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm) → 𝑇 ∈ Mgm) |
35 | 34 | adantr 466 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm) ∧ 𝐵 = {𝑏}) → 𝑇 ∈ Mgm) |
36 | 35 | adantr 466 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm) ∧ 𝐵 = {𝑏}) ∧ 𝑏 ∈ 𝐵) → 𝑇 ∈ Mgm) |
37 | | simpr 471 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm) ∧ 𝐵 = {𝑏}) ∧ 𝑏 ∈ 𝐵) → 𝑏 ∈ 𝐵) |
38 | | eqid 2771 |
. . . . . . . . . . . . . . . . 17
⊢
(+g‘𝑇) = (+g‘𝑇) |
39 | 5, 38 | mgmcl 17453 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑇 ∈ Mgm ∧ 𝑏 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵) → (𝑏(+g‘𝑇)𝑏) ∈ 𝐵) |
40 | 36, 37, 37, 39 | syl3anc 1476 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm) ∧ 𝐵 = {𝑏}) ∧ 𝑏 ∈ 𝐵) → (𝑏(+g‘𝑇)𝑏) ∈ 𝐵) |
41 | | eleq2 2839 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐵 = {𝑏} → ((𝑏(+g‘𝑇)𝑏) ∈ 𝐵 ↔ (𝑏(+g‘𝑇)𝑏) ∈ {𝑏})) |
42 | | elsni 4333 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑏(+g‘𝑇)𝑏) ∈ {𝑏} → (𝑏(+g‘𝑇)𝑏) = 𝑏) |
43 | 41, 42 | syl6bi 243 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐵 = {𝑏} → ((𝑏(+g‘𝑇)𝑏) ∈ 𝐵 → (𝑏(+g‘𝑇)𝑏) = 𝑏)) |
44 | 43 | adantl 467 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm) ∧ 𝐵 = {𝑏}) → ((𝑏(+g‘𝑇)𝑏) ∈ 𝐵 → (𝑏(+g‘𝑇)𝑏) = 𝑏)) |
45 | 44 | adantr 466 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm) ∧ 𝐵 = {𝑏}) ∧ 𝑏 ∈ 𝐵) → ((𝑏(+g‘𝑇)𝑏) ∈ 𝐵 → (𝑏(+g‘𝑇)𝑏) = 𝑏)) |
46 | 40, 45 | mpd 15 |
. . . . . . . . . . . . . 14
⊢ ((((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm) ∧ 𝐵 = {𝑏}) ∧ 𝑏 ∈ 𝐵) → (𝑏(+g‘𝑇)𝑏) = 𝑏) |
47 | 24, 46 | mpdan 667 |
. . . . . . . . . . . . 13
⊢ (((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm) ∧ 𝐵 = {𝑏}) → (𝑏(+g‘𝑇)𝑏) = 𝑏) |
48 | 47 | fveq2d 6336 |
. . . . . . . . . . . 12
⊢ (((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm) ∧ 𝐵 = {𝑏}) → (𝐻‘(𝑏(+g‘𝑇)𝑏)) = (𝐻‘𝑏)) |
49 | 48 | adantr 466 |
. . . . . . . . . . 11
⊢ ((((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm) ∧ 𝐵 = {𝑏}) ∧ (𝐻‘𝑏) = 0 ) → (𝐻‘(𝑏(+g‘𝑇)𝑏)) = (𝐻‘𝑏)) |
50 | 49, 26 | eqtr2d 2806 |
. . . . . . . . . 10
⊢ ((((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm) ∧ 𝐵 = {𝑏}) ∧ (𝐻‘𝑏) = 0 ) → 0 = (𝐻‘(𝑏(+g‘𝑇)𝑏))) |
51 | 27, 33, 50 | 3eqtrrd 2810 |
. . . . . . . . 9
⊢ ((((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm) ∧ 𝐵 = {𝑏}) ∧ (𝐻‘𝑏) = 0 ) → (𝐻‘(𝑏(+g‘𝑇)𝑏)) = ((𝐻‘𝑏)(+g‘𝑆)(𝐻‘𝑏))) |
52 | 25, 51 | mpdan 667 |
. . . . . . . 8
⊢ (((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm) ∧ 𝐵 = {𝑏}) → (𝐻‘(𝑏(+g‘𝑇)𝑏)) = ((𝐻‘𝑏)(+g‘𝑆)(𝐻‘𝑏))) |
53 | | id 22 |
. . . . . . . . . . 11
⊢ (𝐵 = {𝑏} → 𝐵 = {𝑏}) |
54 | 53 | raleqdv 3293 |
. . . . . . . . . . 11
⊢ (𝐵 = {𝑏} → (∀𝑐 ∈ 𝐵 (𝐻‘(𝑎(+g‘𝑇)𝑐)) = ((𝐻‘𝑎)(+g‘𝑆)(𝐻‘𝑐)) ↔ ∀𝑐 ∈ {𝑏} (𝐻‘(𝑎(+g‘𝑇)𝑐)) = ((𝐻‘𝑎)(+g‘𝑆)(𝐻‘𝑐)))) |
55 | 53, 54 | raleqbidv 3301 |
. . . . . . . . . 10
⊢ (𝐵 = {𝑏} → (∀𝑎 ∈ 𝐵 ∀𝑐 ∈ 𝐵 (𝐻‘(𝑎(+g‘𝑇)𝑐)) = ((𝐻‘𝑎)(+g‘𝑆)(𝐻‘𝑐)) ↔ ∀𝑎 ∈ {𝑏}∀𝑐 ∈ {𝑏} (𝐻‘(𝑎(+g‘𝑇)𝑐)) = ((𝐻‘𝑎)(+g‘𝑆)(𝐻‘𝑐)))) |
56 | 55 | adantl 467 |
. . . . . . . . 9
⊢ (((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm) ∧ 𝐵 = {𝑏}) → (∀𝑎 ∈ 𝐵 ∀𝑐 ∈ 𝐵 (𝐻‘(𝑎(+g‘𝑇)𝑐)) = ((𝐻‘𝑎)(+g‘𝑆)(𝐻‘𝑐)) ↔ ∀𝑎 ∈ {𝑏}∀𝑐 ∈ {𝑏} (𝐻‘(𝑎(+g‘𝑇)𝑐)) = ((𝐻‘𝑎)(+g‘𝑆)(𝐻‘𝑐)))) |
57 | | vex 3354 |
. . . . . . . . . 10
⊢ 𝑏 ∈ V |
58 | | fvoveq1 6816 |
. . . . . . . . . . . 12
⊢ (𝑎 = 𝑏 → (𝐻‘(𝑎(+g‘𝑇)𝑐)) = (𝐻‘(𝑏(+g‘𝑇)𝑐))) |
59 | | fveq2 6332 |
. . . . . . . . . . . . 13
⊢ (𝑎 = 𝑏 → (𝐻‘𝑎) = (𝐻‘𝑏)) |
60 | 59 | oveq1d 6808 |
. . . . . . . . . . . 12
⊢ (𝑎 = 𝑏 → ((𝐻‘𝑎)(+g‘𝑆)(𝐻‘𝑐)) = ((𝐻‘𝑏)(+g‘𝑆)(𝐻‘𝑐))) |
61 | 58, 60 | eqeq12d 2786 |
. . . . . . . . . . 11
⊢ (𝑎 = 𝑏 → ((𝐻‘(𝑎(+g‘𝑇)𝑐)) = ((𝐻‘𝑎)(+g‘𝑆)(𝐻‘𝑐)) ↔ (𝐻‘(𝑏(+g‘𝑇)𝑐)) = ((𝐻‘𝑏)(+g‘𝑆)(𝐻‘𝑐)))) |
62 | | oveq2 6801 |
. . . . . . . . . . . . 13
⊢ (𝑐 = 𝑏 → (𝑏(+g‘𝑇)𝑐) = (𝑏(+g‘𝑇)𝑏)) |
63 | 62 | fveq2d 6336 |
. . . . . . . . . . . 12
⊢ (𝑐 = 𝑏 → (𝐻‘(𝑏(+g‘𝑇)𝑐)) = (𝐻‘(𝑏(+g‘𝑇)𝑏))) |
64 | | fveq2 6332 |
. . . . . . . . . . . . 13
⊢ (𝑐 = 𝑏 → (𝐻‘𝑐) = (𝐻‘𝑏)) |
65 | 64 | oveq2d 6809 |
. . . . . . . . . . . 12
⊢ (𝑐 = 𝑏 → ((𝐻‘𝑏)(+g‘𝑆)(𝐻‘𝑐)) = ((𝐻‘𝑏)(+g‘𝑆)(𝐻‘𝑏))) |
66 | 63, 65 | eqeq12d 2786 |
. . . . . . . . . . 11
⊢ (𝑐 = 𝑏 → ((𝐻‘(𝑏(+g‘𝑇)𝑐)) = ((𝐻‘𝑏)(+g‘𝑆)(𝐻‘𝑐)) ↔ (𝐻‘(𝑏(+g‘𝑇)𝑏)) = ((𝐻‘𝑏)(+g‘𝑆)(𝐻‘𝑏)))) |
67 | 61, 66 | 2ralsng 4358 |
. . . . . . . . . 10
⊢ ((𝑏 ∈ V ∧ 𝑏 ∈ V) → (∀𝑎 ∈ {𝑏}∀𝑐 ∈ {𝑏} (𝐻‘(𝑎(+g‘𝑇)𝑐)) = ((𝐻‘𝑎)(+g‘𝑆)(𝐻‘𝑐)) ↔ (𝐻‘(𝑏(+g‘𝑇)𝑏)) = ((𝐻‘𝑏)(+g‘𝑆)(𝐻‘𝑏)))) |
68 | 57, 57, 67 | mp2an 672 |
. . . . . . . . 9
⊢
(∀𝑎 ∈
{𝑏}∀𝑐 ∈ {𝑏} (𝐻‘(𝑎(+g‘𝑇)𝑐)) = ((𝐻‘𝑎)(+g‘𝑆)(𝐻‘𝑐)) ↔ (𝐻‘(𝑏(+g‘𝑇)𝑏)) = ((𝐻‘𝑏)(+g‘𝑆)(𝐻‘𝑏))) |
69 | 56, 68 | syl6bb 276 |
. . . . . . . 8
⊢ (((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm) ∧ 𝐵 = {𝑏}) → (∀𝑎 ∈ 𝐵 ∀𝑐 ∈ 𝐵 (𝐻‘(𝑎(+g‘𝑇)𝑐)) = ((𝐻‘𝑎)(+g‘𝑆)(𝐻‘𝑐)) ↔ (𝐻‘(𝑏(+g‘𝑇)𝑏)) = ((𝐻‘𝑏)(+g‘𝑆)(𝐻‘𝑏)))) |
70 | 52, 69 | mpbird 247 |
. . . . . . 7
⊢ (((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm) ∧ 𝐵 = {𝑏}) → ∀𝑎 ∈ 𝐵 ∀𝑐 ∈ 𝐵 (𝐻‘(𝑎(+g‘𝑇)𝑐)) = ((𝐻‘𝑎)(+g‘𝑆)(𝐻‘𝑐))) |
71 | 17, 70 | jca 501 |
. . . . . 6
⊢ (((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm) ∧ 𝐵 = {𝑏}) → (𝐻:𝐵⟶(Base‘𝑆) ∧ ∀𝑎 ∈ 𝐵 ∀𝑐 ∈ 𝐵 (𝐻‘(𝑎(+g‘𝑇)𝑐)) = ((𝐻‘𝑎)(+g‘𝑆)(𝐻‘𝑐)))) |
72 | 71 | ex 397 |
. . . . 5
⊢ ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm) → (𝐵 = {𝑏} → (𝐻:𝐵⟶(Base‘𝑆) ∧ ∀𝑎 ∈ 𝐵 ∀𝑐 ∈ 𝐵 (𝐻‘(𝑎(+g‘𝑇)𝑐)) = ((𝐻‘𝑎)(+g‘𝑆)(𝐻‘𝑐))))) |
73 | 72 | exlimdv 2013 |
. . . 4
⊢ ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm) →
(∃𝑏 𝐵 = {𝑏} → (𝐻:𝐵⟶(Base‘𝑆) ∧ ∀𝑎 ∈ 𝐵 ∀𝑐 ∈ 𝐵 (𝐻‘(𝑎(+g‘𝑇)𝑐)) = ((𝐻‘𝑎)(+g‘𝑆)(𝐻‘𝑐))))) |
74 | 9, 73 | syl5bi 232 |
. . 3
⊢ ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm) →
((♯‘𝐵) = 1
→ (𝐻:𝐵⟶(Base‘𝑆) ∧ ∀𝑎 ∈ 𝐵 ∀𝑐 ∈ 𝐵 (𝐻‘(𝑎(+g‘𝑇)𝑐)) = ((𝐻‘𝑎)(+g‘𝑆)(𝐻‘𝑐))))) |
75 | 74 | 3impia 1109 |
. 2
⊢ ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm ∧
(♯‘𝐵) = 1)
→ (𝐻:𝐵⟶(Base‘𝑆) ∧ ∀𝑎 ∈ 𝐵 ∀𝑐 ∈ 𝐵 (𝐻‘(𝑎(+g‘𝑇)𝑐)) = ((𝐻‘𝑎)(+g‘𝑆)(𝐻‘𝑐)))) |
76 | 5, 10, 38, 28 | ismgmhm 42311 |
. 2
⊢ (𝐻 ∈ (𝑇 MgmHom 𝑆) ↔ ((𝑇 ∈ Mgm ∧ 𝑆 ∈ Mgm) ∧ (𝐻:𝐵⟶(Base‘𝑆) ∧ ∀𝑎 ∈ 𝐵 ∀𝑐 ∈ 𝐵 (𝐻‘(𝑎(+g‘𝑇)𝑐)) = ((𝐻‘𝑎)(+g‘𝑆)(𝐻‘𝑐))))) |
77 | 4, 75, 76 | sylanbrc 572 |
1
⊢ ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm ∧
(♯‘𝐵) = 1)
→ 𝐻 ∈ (𝑇 MgmHom 𝑆)) |