Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  c0mhm Structured version   Visualization version   GIF version

Theorem c0mhm 42438
Description: The constant mapping to zero is a monoid homomorphism. (Contributed by AV, 16-Apr-2020.)
Hypotheses
Ref Expression
c0mhm.b 𝐵 = (Base‘𝑆)
c0mhm.0 0 = (0g𝑇)
c0mhm.h 𝐻 = (𝑥𝐵0 )
Assertion
Ref Expression
c0mhm ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) → 𝐻 ∈ (𝑆 MndHom 𝑇))
Distinct variable groups:   𝑥,𝐵   𝑥,𝑆   𝑥,𝑇   𝑥, 0
Allowed substitution hint:   𝐻(𝑥)

Proof of Theorem c0mhm
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2771 . . . . . . . 8 (Base‘𝑇) = (Base‘𝑇)
2 c0mhm.0 . . . . . . . 8 0 = (0g𝑇)
31, 2mndidcl 17516 . . . . . . 7 (𝑇 ∈ Mnd → 0 ∈ (Base‘𝑇))
43adantl 467 . . . . . 6 ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) → 0 ∈ (Base‘𝑇))
54adantr 466 . . . . 5 (((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) ∧ 𝑥𝐵) → 0 ∈ (Base‘𝑇))
6 c0mhm.h . . . . 5 𝐻 = (𝑥𝐵0 )
75, 6fmptd 6527 . . . 4 ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) → 𝐻:𝐵⟶(Base‘𝑇))
83ancli 538 . . . . . . . . 9 (𝑇 ∈ Mnd → (𝑇 ∈ Mnd ∧ 0 ∈ (Base‘𝑇)))
98adantl 467 . . . . . . . 8 ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) → (𝑇 ∈ Mnd ∧ 0 ∈ (Base‘𝑇)))
10 eqid 2771 . . . . . . . . 9 (+g𝑇) = (+g𝑇)
111, 10, 2mndlid 17519 . . . . . . . 8 ((𝑇 ∈ Mnd ∧ 0 ∈ (Base‘𝑇)) → ( 0 (+g𝑇) 0 ) = 0 )
129, 11syl 17 . . . . . . 7 ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) → ( 0 (+g𝑇) 0 ) = 0 )
1312adantr 466 . . . . . 6 (((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) ∧ (𝑎𝐵𝑏𝐵)) → ( 0 (+g𝑇) 0 ) = 0 )
146a1i 11 . . . . . . . 8 (((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) ∧ (𝑎𝐵𝑏𝐵)) → 𝐻 = (𝑥𝐵0 ))
15 eqidd 2772 . . . . . . . 8 ((((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑥 = 𝑎) → 0 = 0 )
16 simprl 754 . . . . . . . 8 (((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) ∧ (𝑎𝐵𝑏𝐵)) → 𝑎𝐵)
174adantr 466 . . . . . . . 8 (((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) ∧ (𝑎𝐵𝑏𝐵)) → 0 ∈ (Base‘𝑇))
1814, 15, 16, 17fvmptd 6430 . . . . . . 7 (((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) ∧ (𝑎𝐵𝑏𝐵)) → (𝐻𝑎) = 0 )
19 eqidd 2772 . . . . . . . 8 ((((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑥 = 𝑏) → 0 = 0 )
20 simprr 756 . . . . . . . 8 (((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) ∧ (𝑎𝐵𝑏𝐵)) → 𝑏𝐵)
2114, 19, 20, 17fvmptd 6430 . . . . . . 7 (((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) ∧ (𝑎𝐵𝑏𝐵)) → (𝐻𝑏) = 0 )
2218, 21oveq12d 6811 . . . . . 6 (((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) ∧ (𝑎𝐵𝑏𝐵)) → ((𝐻𝑎)(+g𝑇)(𝐻𝑏)) = ( 0 (+g𝑇) 0 ))
23 eqidd 2772 . . . . . . 7 ((((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑥 = (𝑎(+g𝑆)𝑏)) → 0 = 0 )
24 c0mhm.b . . . . . . . . . 10 𝐵 = (Base‘𝑆)
25 eqid 2771 . . . . . . . . . 10 (+g𝑆) = (+g𝑆)
2624, 25mndcl 17509 . . . . . . . . 9 ((𝑆 ∈ Mnd ∧ 𝑎𝐵𝑏𝐵) → (𝑎(+g𝑆)𝑏) ∈ 𝐵)
27263expb 1113 . . . . . . . 8 ((𝑆 ∈ Mnd ∧ (𝑎𝐵𝑏𝐵)) → (𝑎(+g𝑆)𝑏) ∈ 𝐵)
2827adantlr 694 . . . . . . 7 (((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) ∧ (𝑎𝐵𝑏𝐵)) → (𝑎(+g𝑆)𝑏) ∈ 𝐵)
2914, 23, 28, 17fvmptd 6430 . . . . . 6 (((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) ∧ (𝑎𝐵𝑏𝐵)) → (𝐻‘(𝑎(+g𝑆)𝑏)) = 0 )
3013, 22, 293eqtr4rd 2816 . . . . 5 (((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) ∧ (𝑎𝐵𝑏𝐵)) → (𝐻‘(𝑎(+g𝑆)𝑏)) = ((𝐻𝑎)(+g𝑇)(𝐻𝑏)))
3130ralrimivva 3120 . . . 4 ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) → ∀𝑎𝐵𝑏𝐵 (𝐻‘(𝑎(+g𝑆)𝑏)) = ((𝐻𝑎)(+g𝑇)(𝐻𝑏)))
326a1i 11 . . . . 5 ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) → 𝐻 = (𝑥𝐵0 ))
33 eqidd 2772 . . . . 5 (((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) ∧ 𝑥 = (0g𝑆)) → 0 = 0 )
34 eqid 2771 . . . . . . 7 (0g𝑆) = (0g𝑆)
3524, 34mndidcl 17516 . . . . . 6 (𝑆 ∈ Mnd → (0g𝑆) ∈ 𝐵)
3635adantr 466 . . . . 5 ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) → (0g𝑆) ∈ 𝐵)
3732, 33, 36, 4fvmptd 6430 . . . 4 ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) → (𝐻‘(0g𝑆)) = 0 )
387, 31, 373jca 1122 . . 3 ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) → (𝐻:𝐵⟶(Base‘𝑇) ∧ ∀𝑎𝐵𝑏𝐵 (𝐻‘(𝑎(+g𝑆)𝑏)) = ((𝐻𝑎)(+g𝑇)(𝐻𝑏)) ∧ (𝐻‘(0g𝑆)) = 0 ))
3938ancli 538 . 2 ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) → ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) ∧ (𝐻:𝐵⟶(Base‘𝑇) ∧ ∀𝑎𝐵𝑏𝐵 (𝐻‘(𝑎(+g𝑆)𝑏)) = ((𝐻𝑎)(+g𝑇)(𝐻𝑏)) ∧ (𝐻‘(0g𝑆)) = 0 )))
4024, 1, 25, 10, 34, 2ismhm 17545 . 2 (𝐻 ∈ (𝑆 MndHom 𝑇) ↔ ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) ∧ (𝐻:𝐵⟶(Base‘𝑇) ∧ ∀𝑎𝐵𝑏𝐵 (𝐻‘(𝑎(+g𝑆)𝑏)) = ((𝐻𝑎)(+g𝑇)(𝐻𝑏)) ∧ (𝐻‘(0g𝑆)) = 0 )))
4139, 40sylibr 224 1 ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) → 𝐻 ∈ (𝑆 MndHom 𝑇))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382  w3a 1071   = wceq 1631  wcel 2145  wral 3061  cmpt 4863  wf 6027  cfv 6031  (class class class)co 6793  Basecbs 16064  +gcplusg 16149  0gc0g 16308  Mndcmnd 17502   MndHom cmhm 17541
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 835  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-op 4323  df-uni 4575  df-br 4787  df-opab 4847  df-mpt 4864  df-id 5157  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-fv 6039  df-riota 6754  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-map 8011  df-0g 16310  df-mgm 17450  df-sgrp 17492  df-mnd 17503  df-mhm 17543
This theorem is referenced by:  c0ghm  42439  c0rhm  42440
  Copyright terms: Public domain W3C validator