MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  btwnhl1 Structured version   Visualization version   GIF version

Theorem btwnhl1 25727
Description: Deduce half-line from betweenness. (Contributed by Thierry Arnoux, 4-Mar-2020.)
Hypotheses
Ref Expression
ishlg.p 𝑃 = (Base‘𝐺)
ishlg.i 𝐼 = (Itv‘𝐺)
ishlg.k 𝐾 = (hlG‘𝐺)
ishlg.a (𝜑𝐴𝑃)
ishlg.b (𝜑𝐵𝑃)
ishlg.c (𝜑𝐶𝑃)
hlln.1 (𝜑𝐺 ∈ TarskiG)
hltr.d (𝜑𝐷𝑃)
btwnhl1.1 (𝜑𝐶 ∈ (𝐴𝐼𝐵))
btwnhl1.2 (𝜑𝐴𝐵)
btwnhl1.3 (𝜑𝐶𝐴)
Assertion
Ref Expression
btwnhl1 (𝜑𝐶(𝐾𝐴)𝐵)

Proof of Theorem btwnhl1
StepHypRef Expression
1 btwnhl1.3 . . 3 (𝜑𝐶𝐴)
2 btwnhl1.2 . . . 4 (𝜑𝐴𝐵)
32necomd 2997 . . 3 (𝜑𝐵𝐴)
4 btwnhl1.1 . . . 4 (𝜑𝐶 ∈ (𝐴𝐼𝐵))
54orcd 853 . . 3 (𝜑 → (𝐶 ∈ (𝐴𝐼𝐵) ∨ 𝐵 ∈ (𝐴𝐼𝐶)))
61, 3, 53jca 1121 . 2 (𝜑 → (𝐶𝐴𝐵𝐴 ∧ (𝐶 ∈ (𝐴𝐼𝐵) ∨ 𝐵 ∈ (𝐴𝐼𝐶))))
7 ishlg.p . . 3 𝑃 = (Base‘𝐺)
8 ishlg.i . . 3 𝐼 = (Itv‘𝐺)
9 ishlg.k . . 3 𝐾 = (hlG‘𝐺)
10 ishlg.c . . 3 (𝜑𝐶𝑃)
11 ishlg.b . . 3 (𝜑𝐵𝑃)
12 ishlg.a . . 3 (𝜑𝐴𝑃)
13 hlln.1 . . 3 (𝜑𝐺 ∈ TarskiG)
147, 8, 9, 10, 11, 12, 13ishlg 25717 . 2 (𝜑 → (𝐶(𝐾𝐴)𝐵 ↔ (𝐶𝐴𝐵𝐴 ∧ (𝐶 ∈ (𝐴𝐼𝐵) ∨ 𝐵 ∈ (𝐴𝐼𝐶)))))
156, 14mpbird 247 1 (𝜑𝐶(𝐾𝐴)𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 826  w3a 1070   = wceq 1630  wcel 2144  wne 2942   class class class wbr 4784  cfv 6031  (class class class)co 6792  Basecbs 16063  TarskiGcstrkg 25549  Itvcitv 25555  hlGchlg 25715
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-8 2146  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750  ax-rep 4902  ax-sep 4912  ax-nul 4920  ax-pow 4971  ax-pr 5034  ax-un 7095
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3an 1072  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2049  df-eu 2621  df-mo 2622  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ne 2943  df-ral 3065  df-rex 3066  df-reu 3067  df-rab 3069  df-v 3351  df-sbc 3586  df-csb 3681  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-nul 4062  df-if 4224  df-pw 4297  df-sn 4315  df-pr 4317  df-op 4321  df-uni 4573  df-iun 4654  df-br 4785  df-opab 4845  df-mpt 4862  df-id 5157  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-ov 6795  df-hlg 25716
This theorem is referenced by:  hlpasch  25868  lnopp2hpgb  25875  dfcgra2  25941
  Copyright terms: Public domain W3C validator