Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brxrn2 Structured version   Visualization version   GIF version

Theorem brxrn2 34472
Description: A characterization of the range Cartesian product. (Contributed by Peter Mazsa, 14-Oct-2020.)
Assertion
Ref Expression
brxrn2 (𝐴𝑉 → (𝐴(𝑅𝑆)𝐵 ↔ ∃𝑥𝑦(𝐵 = ⟨𝑥, 𝑦⟩ ∧ 𝐴𝑅𝑥𝐴𝑆𝑦)))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦   𝑥,𝑅,𝑦   𝑥,𝑆,𝑦   𝑥,𝑉,𝑦

Proof of Theorem brxrn2
StepHypRef Expression
1 xrnss3v 34469 . . . . . . 7 (𝑅𝑆) ⊆ (V × (V × V))
21brel 5308 . . . . . 6 (𝐴(𝑅𝑆)𝐵 → (𝐴 ∈ V ∧ 𝐵 ∈ (V × V)))
32simprd 477 . . . . 5 (𝐴(𝑅𝑆)𝐵𝐵 ∈ (V × V))
4 elvv 5317 . . . . 5 (𝐵 ∈ (V × V) ↔ ∃𝑥𝑦 𝐵 = ⟨𝑥, 𝑦⟩)
53, 4sylib 208 . . . 4 (𝐴(𝑅𝑆)𝐵 → ∃𝑥𝑦 𝐵 = ⟨𝑥, 𝑦⟩)
65pm4.71ri 542 . . 3 (𝐴(𝑅𝑆)𝐵 ↔ (∃𝑥𝑦 𝐵 = ⟨𝑥, 𝑦⟩ ∧ 𝐴(𝑅𝑆)𝐵))
7 19.41vv 2029 . . 3 (∃𝑥𝑦(𝐵 = ⟨𝑥, 𝑦⟩ ∧ 𝐴(𝑅𝑆)𝐵) ↔ (∃𝑥𝑦 𝐵 = ⟨𝑥, 𝑦⟩ ∧ 𝐴(𝑅𝑆)𝐵))
8 breq2 4788 . . . . 5 (𝐵 = ⟨𝑥, 𝑦⟩ → (𝐴(𝑅𝑆)𝐵𝐴(𝑅𝑆)⟨𝑥, 𝑦⟩))
98pm5.32i 556 . . . 4 ((𝐵 = ⟨𝑥, 𝑦⟩ ∧ 𝐴(𝑅𝑆)𝐵) ↔ (𝐵 = ⟨𝑥, 𝑦⟩ ∧ 𝐴(𝑅𝑆)⟨𝑥, 𝑦⟩))
1092exbii 1924 . . 3 (∃𝑥𝑦(𝐵 = ⟨𝑥, 𝑦⟩ ∧ 𝐴(𝑅𝑆)𝐵) ↔ ∃𝑥𝑦(𝐵 = ⟨𝑥, 𝑦⟩ ∧ 𝐴(𝑅𝑆)⟨𝑥, 𝑦⟩))
116, 7, 103bitr2i 288 . 2 (𝐴(𝑅𝑆)𝐵 ↔ ∃𝑥𝑦(𝐵 = ⟨𝑥, 𝑦⟩ ∧ 𝐴(𝑅𝑆)⟨𝑥, 𝑦⟩))
12 brxrn 34471 . . . . . 6 ((𝐴𝑉𝑥 ∈ V ∧ 𝑦 ∈ V) → (𝐴(𝑅𝑆)⟨𝑥, 𝑦⟩ ↔ (𝐴𝑅𝑥𝐴𝑆𝑦)))
1312el3v23 34331 . . . . 5 (𝐴𝑉 → (𝐴(𝑅𝑆)⟨𝑥, 𝑦⟩ ↔ (𝐴𝑅𝑥𝐴𝑆𝑦)))
1413anbi2d 606 . . . 4 (𝐴𝑉 → ((𝐵 = ⟨𝑥, 𝑦⟩ ∧ 𝐴(𝑅𝑆)⟨𝑥, 𝑦⟩) ↔ (𝐵 = ⟨𝑥, 𝑦⟩ ∧ (𝐴𝑅𝑥𝐴𝑆𝑦))))
15 3anass 1079 . . . 4 ((𝐵 = ⟨𝑥, 𝑦⟩ ∧ 𝐴𝑅𝑥𝐴𝑆𝑦) ↔ (𝐵 = ⟨𝑥, 𝑦⟩ ∧ (𝐴𝑅𝑥𝐴𝑆𝑦)))
1614, 15syl6bbr 278 . . 3 (𝐴𝑉 → ((𝐵 = ⟨𝑥, 𝑦⟩ ∧ 𝐴(𝑅𝑆)⟨𝑥, 𝑦⟩) ↔ (𝐵 = ⟨𝑥, 𝑦⟩ ∧ 𝐴𝑅𝑥𝐴𝑆𝑦)))
17162exbidv 2003 . 2 (𝐴𝑉 → (∃𝑥𝑦(𝐵 = ⟨𝑥, 𝑦⟩ ∧ 𝐴(𝑅𝑆)⟨𝑥, 𝑦⟩) ↔ ∃𝑥𝑦(𝐵 = ⟨𝑥, 𝑦⟩ ∧ 𝐴𝑅𝑥𝐴𝑆𝑦)))
1811, 17syl5bb 272 1 (𝐴𝑉 → (𝐴(𝑅𝑆)𝐵 ↔ ∃𝑥𝑦(𝐵 = ⟨𝑥, 𝑦⟩ ∧ 𝐴𝑅𝑥𝐴𝑆𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 382  w3a 1070   = wceq 1630  wex 1851  wcel 2144  Vcvv 3349  cop 4320   class class class wbr 4784   × cxp 5247  cxrn 34307
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-8 2146  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750  ax-sep 4912  ax-nul 4920  ax-pow 4971  ax-pr 5034  ax-un 7095
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3an 1072  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2049  df-eu 2621  df-mo 2622  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ral 3065  df-rex 3066  df-rab 3069  df-v 3351  df-sbc 3586  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-nul 4062  df-if 4224  df-sn 4315  df-pr 4317  df-op 4321  df-uni 4573  df-br 4785  df-opab 4845  df-mpt 4862  df-id 5157  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-fo 6037  df-fv 6039  df-1st 7314  df-2nd 7315  df-xrn 34468
This theorem is referenced by:  dfxrn2  34473  elecxrn  34483  inxpxrn  34488  br1cnvxrn2  34489
  Copyright terms: Public domain W3C validator