MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  brwdom3 Structured version   Visualization version   GIF version

Theorem brwdom3 8643
Description: Condition for weak dominance with a condition reminiscent of wdomd 8642. (Contributed by Stefan O'Rear, 13-Feb-2015.) (Revised by Mario Carneiro, 25-Jun-2015.)
Assertion
Ref Expression
brwdom3 ((𝑋𝑉𝑌𝑊) → (𝑋* 𝑌 ↔ ∃𝑓𝑥𝑋𝑦𝑌 𝑥 = (𝑓𝑦)))
Distinct variable groups:   𝑓,𝑋,𝑥,𝑦   𝑓,𝑌,𝑥,𝑦
Allowed substitution hints:   𝑉(𝑥,𝑦,𝑓)   𝑊(𝑥,𝑦,𝑓)

Proof of Theorem brwdom3
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 3364 . 2 (𝑋𝑉𝑋 ∈ V)
2 elex 3364 . 2 (𝑌𝑊𝑌 ∈ V)
3 brwdom2 8634 . . . . 5 (𝑌 ∈ V → (𝑋* 𝑌 ↔ ∃𝑧 ∈ 𝒫 𝑌𝑓 𝑓:𝑧onto𝑋))
43adantl 467 . . . 4 ((𝑋 ∈ V ∧ 𝑌 ∈ V) → (𝑋* 𝑌 ↔ ∃𝑧 ∈ 𝒫 𝑌𝑓 𝑓:𝑧onto𝑋))
5 dffo3 6517 . . . . . . . 8 (𝑓:𝑧onto𝑋 ↔ (𝑓:𝑧𝑋 ∧ ∀𝑥𝑋𝑦𝑧 𝑥 = (𝑓𝑦)))
65simprbi 484 . . . . . . 7 (𝑓:𝑧onto𝑋 → ∀𝑥𝑋𝑦𝑧 𝑥 = (𝑓𝑦))
7 elpwi 4307 . . . . . . . . . 10 (𝑧 ∈ 𝒫 𝑌𝑧𝑌)
8 ssrexv 3816 . . . . . . . . . 10 (𝑧𝑌 → (∃𝑦𝑧 𝑥 = (𝑓𝑦) → ∃𝑦𝑌 𝑥 = (𝑓𝑦)))
97, 8syl 17 . . . . . . . . 9 (𝑧 ∈ 𝒫 𝑌 → (∃𝑦𝑧 𝑥 = (𝑓𝑦) → ∃𝑦𝑌 𝑥 = (𝑓𝑦)))
109adantl 467 . . . . . . . 8 (((𝑋 ∈ V ∧ 𝑌 ∈ V) ∧ 𝑧 ∈ 𝒫 𝑌) → (∃𝑦𝑧 𝑥 = (𝑓𝑦) → ∃𝑦𝑌 𝑥 = (𝑓𝑦)))
1110ralimdv 3112 . . . . . . 7 (((𝑋 ∈ V ∧ 𝑌 ∈ V) ∧ 𝑧 ∈ 𝒫 𝑌) → (∀𝑥𝑋𝑦𝑧 𝑥 = (𝑓𝑦) → ∀𝑥𝑋𝑦𝑌 𝑥 = (𝑓𝑦)))
126, 11syl5 34 . . . . . 6 (((𝑋 ∈ V ∧ 𝑌 ∈ V) ∧ 𝑧 ∈ 𝒫 𝑌) → (𝑓:𝑧onto𝑋 → ∀𝑥𝑋𝑦𝑌 𝑥 = (𝑓𝑦)))
1312eximdv 1998 . . . . 5 (((𝑋 ∈ V ∧ 𝑌 ∈ V) ∧ 𝑧 ∈ 𝒫 𝑌) → (∃𝑓 𝑓:𝑧onto𝑋 → ∃𝑓𝑥𝑋𝑦𝑌 𝑥 = (𝑓𝑦)))
1413rexlimdva 3179 . . . 4 ((𝑋 ∈ V ∧ 𝑌 ∈ V) → (∃𝑧 ∈ 𝒫 𝑌𝑓 𝑓:𝑧onto𝑋 → ∃𝑓𝑥𝑋𝑦𝑌 𝑥 = (𝑓𝑦)))
154, 14sylbid 230 . . 3 ((𝑋 ∈ V ∧ 𝑌 ∈ V) → (𝑋* 𝑌 → ∃𝑓𝑥𝑋𝑦𝑌 𝑥 = (𝑓𝑦)))
16 simpll 750 . . . . . 6 (((𝑋 ∈ V ∧ 𝑌 ∈ V) ∧ ∀𝑥𝑋𝑦𝑌 𝑥 = (𝑓𝑦)) → 𝑋 ∈ V)
17 simplr 752 . . . . . 6 (((𝑋 ∈ V ∧ 𝑌 ∈ V) ∧ ∀𝑥𝑋𝑦𝑌 𝑥 = (𝑓𝑦)) → 𝑌 ∈ V)
18 eqeq1 2775 . . . . . . . . . . . 12 (𝑥 = 𝑧 → (𝑥 = (𝑓𝑦) ↔ 𝑧 = (𝑓𝑦)))
1918rexbidv 3200 . . . . . . . . . . 11 (𝑥 = 𝑧 → (∃𝑦𝑌 𝑥 = (𝑓𝑦) ↔ ∃𝑦𝑌 𝑧 = (𝑓𝑦)))
20 fveq2 6332 . . . . . . . . . . . . 13 (𝑦 = 𝑤 → (𝑓𝑦) = (𝑓𝑤))
2120eqeq2d 2781 . . . . . . . . . . . 12 (𝑦 = 𝑤 → (𝑧 = (𝑓𝑦) ↔ 𝑧 = (𝑓𝑤)))
2221cbvrexv 3321 . . . . . . . . . . 11 (∃𝑦𝑌 𝑧 = (𝑓𝑦) ↔ ∃𝑤𝑌 𝑧 = (𝑓𝑤))
2319, 22syl6bb 276 . . . . . . . . . 10 (𝑥 = 𝑧 → (∃𝑦𝑌 𝑥 = (𝑓𝑦) ↔ ∃𝑤𝑌 𝑧 = (𝑓𝑤)))
2423cbvralv 3320 . . . . . . . . 9 (∀𝑥𝑋𝑦𝑌 𝑥 = (𝑓𝑦) ↔ ∀𝑧𝑋𝑤𝑌 𝑧 = (𝑓𝑤))
2524biimpi 206 . . . . . . . 8 (∀𝑥𝑋𝑦𝑌 𝑥 = (𝑓𝑦) → ∀𝑧𝑋𝑤𝑌 𝑧 = (𝑓𝑤))
2625adantl 467 . . . . . . 7 (((𝑋 ∈ V ∧ 𝑌 ∈ V) ∧ ∀𝑥𝑋𝑦𝑌 𝑥 = (𝑓𝑦)) → ∀𝑧𝑋𝑤𝑌 𝑧 = (𝑓𝑤))
2726r19.21bi 3081 . . . . . 6 ((((𝑋 ∈ V ∧ 𝑌 ∈ V) ∧ ∀𝑥𝑋𝑦𝑌 𝑥 = (𝑓𝑦)) ∧ 𝑧𝑋) → ∃𝑤𝑌 𝑧 = (𝑓𝑤))
2816, 17, 27wdom2d 8641 . . . . 5 (((𝑋 ∈ V ∧ 𝑌 ∈ V) ∧ ∀𝑥𝑋𝑦𝑌 𝑥 = (𝑓𝑦)) → 𝑋* 𝑌)
2928ex 397 . . . 4 ((𝑋 ∈ V ∧ 𝑌 ∈ V) → (∀𝑥𝑋𝑦𝑌 𝑥 = (𝑓𝑦) → 𝑋* 𝑌))
3029exlimdv 2013 . . 3 ((𝑋 ∈ V ∧ 𝑌 ∈ V) → (∃𝑓𝑥𝑋𝑦𝑌 𝑥 = (𝑓𝑦) → 𝑋* 𝑌))
3115, 30impbid 202 . 2 ((𝑋 ∈ V ∧ 𝑌 ∈ V) → (𝑋* 𝑌 ↔ ∃𝑓𝑥𝑋𝑦𝑌 𝑥 = (𝑓𝑦)))
321, 2, 31syl2an 583 1 ((𝑋𝑉𝑌𝑊) → (𝑋* 𝑌 ↔ ∃𝑓𝑥𝑋𝑦𝑌 𝑥 = (𝑓𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 382   = wceq 1631  wex 1852  wcel 2145  wral 3061  wrex 3062  Vcvv 3351  wss 3723  𝒫 cpw 4297   class class class wbr 4786  wf 6027  ontowfo 6029  cfv 6031  * cwdom 8618
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-op 4323  df-uni 4575  df-br 4787  df-opab 4847  df-mpt 4864  df-id 5157  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-er 7896  df-en 8110  df-dom 8111  df-sdom 8112  df-wdom 8620
This theorem is referenced by:  brwdom3i  8644
  Copyright terms: Public domain W3C validator