![]() |
Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > brtxpsd3 | Structured version Visualization version GIF version |
Description: A third common abbreviation for quantifier-free definitions. (Contributed by Scott Fenton, 3-May-2014.) |
Ref | Expression |
---|---|
brtxpsd2.1 | ⊢ 𝐴 ∈ V |
brtxpsd2.2 | ⊢ 𝐵 ∈ V |
brtxpsd2.3 | ⊢ 𝑅 = (𝐶 ∖ ran ((V ⊗ E ) △ (𝑆 ⊗ V))) |
brtxpsd2.4 | ⊢ 𝐴𝐶𝐵 |
brtxpsd3.5 | ⊢ (𝑥 ∈ 𝑋 ↔ 𝑥𝑆𝐴) |
Ref | Expression |
---|---|
brtxpsd3 | ⊢ (𝐴𝑅𝐵 ↔ 𝐵 = 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brtxpsd3.5 | . . . 4 ⊢ (𝑥 ∈ 𝑋 ↔ 𝑥𝑆𝐴) | |
2 | 1 | bibi2i 326 | . . 3 ⊢ ((𝑥 ∈ 𝐵 ↔ 𝑥 ∈ 𝑋) ↔ (𝑥 ∈ 𝐵 ↔ 𝑥𝑆𝐴)) |
3 | 2 | albii 1787 | . 2 ⊢ (∀𝑥(𝑥 ∈ 𝐵 ↔ 𝑥 ∈ 𝑋) ↔ ∀𝑥(𝑥 ∈ 𝐵 ↔ 𝑥𝑆𝐴)) |
4 | dfcleq 2645 | . 2 ⊢ (𝐵 = 𝑋 ↔ ∀𝑥(𝑥 ∈ 𝐵 ↔ 𝑥 ∈ 𝑋)) | |
5 | brtxpsd2.1 | . . 3 ⊢ 𝐴 ∈ V | |
6 | brtxpsd2.2 | . . 3 ⊢ 𝐵 ∈ V | |
7 | brtxpsd2.3 | . . 3 ⊢ 𝑅 = (𝐶 ∖ ran ((V ⊗ E ) △ (𝑆 ⊗ V))) | |
8 | brtxpsd2.4 | . . 3 ⊢ 𝐴𝐶𝐵 | |
9 | 5, 6, 7, 8 | brtxpsd2 32127 | . 2 ⊢ (𝐴𝑅𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐵 ↔ 𝑥𝑆𝐴)) |
10 | 3, 4, 9 | 3bitr4ri 293 | 1 ⊢ (𝐴𝑅𝐵 ↔ 𝐵 = 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 ∀wal 1521 = wceq 1523 ∈ wcel 2030 Vcvv 3231 ∖ cdif 3604 △ csymdif 3876 class class class wbr 4685 E cep 5057 ran crn 5144 ⊗ ctxp 32062 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-ral 2946 df-rex 2947 df-rab 2950 df-v 3233 df-sbc 3469 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-symdif 3877 df-nul 3949 df-if 4120 df-sn 4211 df-pr 4213 df-op 4217 df-uni 4469 df-br 4686 df-opab 4746 df-mpt 4763 df-id 5053 df-eprel 5058 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-fo 5932 df-fv 5934 df-1st 7210 df-2nd 7211 df-txp 32086 |
This theorem is referenced by: brbigcup 32130 brsingle 32149 brimage 32158 brcart 32164 brapply 32170 brcup 32171 brcap 32172 |
Copyright terms: Public domain | W3C validator |