MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  brtpos0 Structured version   Visualization version   GIF version

Theorem brtpos0 7404
Description: The behavior of tpos when the left argument is the empty set (which is not an ordered pair but is the "default" value of an ordered pair when the arguments are proper classes). This allows us to eliminate sethood hypotheses on 𝐴, 𝐵 in brtpos 7406. (Contributed by Mario Carneiro, 10-Sep-2015.)
Assertion
Ref Expression
brtpos0 (𝐴𝑉 → (∅tpos 𝐹𝐴 ↔ ∅𝐹𝐴))

Proof of Theorem brtpos0
StepHypRef Expression
1 brtpos2 7403 . 2 (𝐴𝑉 → (∅tpos 𝐹𝐴 ↔ (∅ ∈ (dom 𝐹 ∪ {∅}) ∧ {∅}𝐹𝐴)))
2 ssun2 3810 . . . . 5 {∅} ⊆ (dom 𝐹 ∪ {∅})
3 0ex 4823 . . . . . 6 ∅ ∈ V
43snid 4241 . . . . 5 ∅ ∈ {∅}
52, 4sselii 3633 . . . 4 ∅ ∈ (dom 𝐹 ∪ {∅})
65biantrur 526 . . 3 ( {∅}𝐹𝐴 ↔ (∅ ∈ (dom 𝐹 ∪ {∅}) ∧ {∅}𝐹𝐴))
7 cnvsn0 5638 . . . . . 6 {∅} = ∅
87unieqi 4477 . . . . 5 {∅} =
9 uni0 4497 . . . . 5 ∅ = ∅
108, 9eqtri 2673 . . . 4 {∅} = ∅
1110breq1i 4692 . . 3 ( {∅}𝐹𝐴 ↔ ∅𝐹𝐴)
126, 11bitr3i 266 . 2 ((∅ ∈ (dom 𝐹 ∪ {∅}) ∧ {∅}𝐹𝐴) ↔ ∅𝐹𝐴)
131, 12syl6bb 276 1 (𝐴𝑉 → (∅tpos 𝐹𝐴 ↔ ∅𝐹𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  wcel 2030  cun 3605  c0 3948  {csn 4210   cuni 4468   class class class wbr 4685  ccnv 5142  dom cdm 5143  tpos ctpos 7396
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-rab 2950  df-v 3233  df-sbc 3469  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-br 4686  df-opab 4746  df-mpt 4763  df-id 5053  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-iota 5889  df-fun 5928  df-fn 5929  df-fv 5934  df-tpos 7397
This theorem is referenced by:  reldmtpos  7405  brtpos  7406  tpostpos  7417
  Copyright terms: Public domain W3C validator