![]() |
Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > brtp | Structured version Visualization version GIF version |
Description: A condition for a binary relation over an unordered triple. (Contributed by Scott Fenton, 8-Jun-2011.) |
Ref | Expression |
---|---|
brtp.1 | ⊢ 𝑋 ∈ V |
brtp.2 | ⊢ 𝑌 ∈ V |
Ref | Expression |
---|---|
brtp | ⊢ (𝑋{〈𝐴, 𝐵〉, 〈𝐶, 𝐷〉, 〈𝐸, 𝐹〉}𝑌 ↔ ((𝑋 = 𝐴 ∧ 𝑌 = 𝐵) ∨ (𝑋 = 𝐶 ∧ 𝑌 = 𝐷) ∨ (𝑋 = 𝐸 ∧ 𝑌 = 𝐹))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-br 4801 | . 2 ⊢ (𝑋{〈𝐴, 𝐵〉, 〈𝐶, 𝐷〉, 〈𝐸, 𝐹〉}𝑌 ↔ 〈𝑋, 𝑌〉 ∈ {〈𝐴, 𝐵〉, 〈𝐶, 𝐷〉, 〈𝐸, 𝐹〉}) | |
2 | opex 5077 | . . 3 ⊢ 〈𝑋, 𝑌〉 ∈ V | |
3 | 2 | eltp 4370 | . 2 ⊢ (〈𝑋, 𝑌〉 ∈ {〈𝐴, 𝐵〉, 〈𝐶, 𝐷〉, 〈𝐸, 𝐹〉} ↔ (〈𝑋, 𝑌〉 = 〈𝐴, 𝐵〉 ∨ 〈𝑋, 𝑌〉 = 〈𝐶, 𝐷〉 ∨ 〈𝑋, 𝑌〉 = 〈𝐸, 𝐹〉)) |
4 | brtp.1 | . . . 4 ⊢ 𝑋 ∈ V | |
5 | brtp.2 | . . . 4 ⊢ 𝑌 ∈ V | |
6 | 4, 5 | opth 5089 | . . 3 ⊢ (〈𝑋, 𝑌〉 = 〈𝐴, 𝐵〉 ↔ (𝑋 = 𝐴 ∧ 𝑌 = 𝐵)) |
7 | 4, 5 | opth 5089 | . . 3 ⊢ (〈𝑋, 𝑌〉 = 〈𝐶, 𝐷〉 ↔ (𝑋 = 𝐶 ∧ 𝑌 = 𝐷)) |
8 | 4, 5 | opth 5089 | . . 3 ⊢ (〈𝑋, 𝑌〉 = 〈𝐸, 𝐹〉 ↔ (𝑋 = 𝐸 ∧ 𝑌 = 𝐹)) |
9 | 6, 7, 8 | 3orbi123i 1160 | . 2 ⊢ ((〈𝑋, 𝑌〉 = 〈𝐴, 𝐵〉 ∨ 〈𝑋, 𝑌〉 = 〈𝐶, 𝐷〉 ∨ 〈𝑋, 𝑌〉 = 〈𝐸, 𝐹〉) ↔ ((𝑋 = 𝐴 ∧ 𝑌 = 𝐵) ∨ (𝑋 = 𝐶 ∧ 𝑌 = 𝐷) ∨ (𝑋 = 𝐸 ∧ 𝑌 = 𝐹))) |
10 | 1, 3, 9 | 3bitri 286 | 1 ⊢ (𝑋{〈𝐴, 𝐵〉, 〈𝐶, 𝐷〉, 〈𝐸, 𝐹〉}𝑌 ↔ ((𝑋 = 𝐴 ∧ 𝑌 = 𝐵) ∨ (𝑋 = 𝐶 ∧ 𝑌 = 𝐷) ∨ (𝑋 = 𝐸 ∧ 𝑌 = 𝐹))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 ∧ wa 383 ∨ w3o 1071 = wceq 1628 ∈ wcel 2135 Vcvv 3336 {ctp 4321 〈cop 4323 class class class wbr 4800 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1867 ax-4 1882 ax-5 1984 ax-6 2050 ax-7 2086 ax-9 2144 ax-10 2164 ax-11 2179 ax-12 2192 ax-13 2387 ax-ext 2736 ax-sep 4929 ax-nul 4937 ax-pr 5051 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1631 df-ex 1850 df-nf 1855 df-sb 2043 df-clab 2743 df-cleq 2749 df-clel 2752 df-nfc 2887 df-rab 3055 df-v 3338 df-dif 3714 df-un 3716 df-in 3718 df-ss 3725 df-nul 4055 df-if 4227 df-sn 4318 df-pr 4320 df-tp 4322 df-op 4324 df-br 4801 |
This theorem is referenced by: sltval2 32111 sltintdifex 32116 sltres 32117 noextendlt 32124 noextendgt 32125 nolesgn2o 32126 sltsolem1 32128 nosepnelem 32132 nosep1o 32134 nosepdmlem 32135 nodenselem8 32143 nodense 32144 nolt02o 32147 nosupbnd2lem1 32163 |
Copyright terms: Public domain | W3C validator |