![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > brsymdif | Structured version Visualization version GIF version |
Description: Characterization of the symmetric difference of two binary relations. (Contributed by Scott Fenton, 11-Apr-2012.) |
Ref | Expression |
---|---|
brsymdif | ⊢ (𝐴(𝑅 △ 𝑆)𝐵 ↔ ¬ (𝐴𝑅𝐵 ↔ 𝐴𝑆𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-br 4686 | . 2 ⊢ (𝐴(𝑅 △ 𝑆)𝐵 ↔ 〈𝐴, 𝐵〉 ∈ (𝑅 △ 𝑆)) | |
2 | elsymdif 3882 | . . 3 ⊢ (〈𝐴, 𝐵〉 ∈ (𝑅 △ 𝑆) ↔ ¬ (〈𝐴, 𝐵〉 ∈ 𝑅 ↔ 〈𝐴, 𝐵〉 ∈ 𝑆)) | |
3 | df-br 4686 | . . . 4 ⊢ (𝐴𝑅𝐵 ↔ 〈𝐴, 𝐵〉 ∈ 𝑅) | |
4 | df-br 4686 | . . . 4 ⊢ (𝐴𝑆𝐵 ↔ 〈𝐴, 𝐵〉 ∈ 𝑆) | |
5 | 3, 4 | bibi12i 328 | . . 3 ⊢ ((𝐴𝑅𝐵 ↔ 𝐴𝑆𝐵) ↔ (〈𝐴, 𝐵〉 ∈ 𝑅 ↔ 〈𝐴, 𝐵〉 ∈ 𝑆)) |
6 | 2, 5 | xchbinxr 324 | . 2 ⊢ (〈𝐴, 𝐵〉 ∈ (𝑅 △ 𝑆) ↔ ¬ (𝐴𝑅𝐵 ↔ 𝐴𝑆𝐵)) |
7 | 1, 6 | bitri 264 | 1 ⊢ (𝐴(𝑅 △ 𝑆)𝐵 ↔ ¬ (𝐴𝑅𝐵 ↔ 𝐴𝑆𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 196 ∈ wcel 2030 △ csymdif 3876 〈cop 4216 class class class wbr 4685 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-v 3233 df-dif 3610 df-un 3612 df-symdif 3877 df-br 4686 |
This theorem is referenced by: brtxpsd 32126 |
Copyright terms: Public domain | W3C validator |