![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > brrpssg | Structured version Visualization version GIF version |
Description: The proper subset relation on sets is the same as class proper subsethood. (Contributed by Stefan O'Rear, 2-Nov-2014.) |
Ref | Expression |
---|---|
brrpssg | ⊢ (𝐵 ∈ 𝑉 → (𝐴 [⊊] 𝐵 ↔ 𝐴 ⊊ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3364 | . . 3 ⊢ (𝐵 ∈ 𝑉 → 𝐵 ∈ V) | |
2 | relrpss 7085 | . . . 4 ⊢ Rel [⊊] | |
3 | 2 | brrelexi 5298 | . . 3 ⊢ (𝐴 [⊊] 𝐵 → 𝐴 ∈ V) |
4 | 1, 3 | anim12i 600 | . 2 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐴 [⊊] 𝐵) → (𝐵 ∈ V ∧ 𝐴 ∈ V)) |
5 | 1 | adantr 466 | . . 3 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐴 ⊊ 𝐵) → 𝐵 ∈ V) |
6 | pssss 3852 | . . . 4 ⊢ (𝐴 ⊊ 𝐵 → 𝐴 ⊆ 𝐵) | |
7 | ssexg 4938 | . . . 4 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ V) → 𝐴 ∈ V) | |
8 | 6, 1, 7 | syl2anr 584 | . . 3 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐴 ⊊ 𝐵) → 𝐴 ∈ V) |
9 | 5, 8 | jca 501 | . 2 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐴 ⊊ 𝐵) → (𝐵 ∈ V ∧ 𝐴 ∈ V)) |
10 | psseq1 3844 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑥 ⊊ 𝑦 ↔ 𝐴 ⊊ 𝑦)) | |
11 | psseq2 3845 | . . . 4 ⊢ (𝑦 = 𝐵 → (𝐴 ⊊ 𝑦 ↔ 𝐴 ⊊ 𝐵)) | |
12 | df-rpss 7084 | . . . 4 ⊢ [⊊] = {〈𝑥, 𝑦〉 ∣ 𝑥 ⊊ 𝑦} | |
13 | 10, 11, 12 | brabg 5127 | . . 3 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴 [⊊] 𝐵 ↔ 𝐴 ⊊ 𝐵)) |
14 | 13 | ancoms 455 | . 2 ⊢ ((𝐵 ∈ V ∧ 𝐴 ∈ V) → (𝐴 [⊊] 𝐵 ↔ 𝐴 ⊊ 𝐵)) |
15 | 4, 9, 14 | pm5.21nd 803 | 1 ⊢ (𝐵 ∈ 𝑉 → (𝐴 [⊊] 𝐵 ↔ 𝐴 ⊊ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 382 ∈ wcel 2145 Vcvv 3351 ⊆ wss 3723 ⊊ wpss 3724 class class class wbr 4786 [⊊] crpss 7083 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-sep 4915 ax-nul 4923 ax-pr 5034 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 835 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3353 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-pss 3739 df-nul 4064 df-if 4226 df-sn 4317 df-pr 4319 df-op 4323 df-br 4787 df-opab 4847 df-xp 5255 df-rel 5256 df-rpss 7084 |
This theorem is referenced by: brrpss 7087 sorpssi 7090 |
Copyright terms: Public domain | W3C validator |