![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > brres2 | Structured version Visualization version GIF version |
Description: Binary relation on a restriction. (Contributed by Peter Mazsa, 2-Jan-2019.) (Revised by Peter Mazsa, 16-Dec-2021.) |
Ref | Expression |
---|---|
brres2 | ⊢ (𝐵(𝑅 ↾ 𝐴)𝐶 ↔ 𝐵(𝑅 ∩ (𝐴 × ran (𝑅 ↾ 𝐴)))𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brresALTV 34356 | . . 3 ⊢ (𝐶 ∈ ran (𝑅 ↾ 𝐴) → (𝐵(𝑅 ↾ 𝐴)𝐶 ↔ (𝐵 ∈ 𝐴 ∧ 𝐵𝑅𝐶))) | |
2 | 1 | pm5.32i 672 | . 2 ⊢ ((𝐶 ∈ ran (𝑅 ↾ 𝐴) ∧ 𝐵(𝑅 ↾ 𝐴)𝐶) ↔ (𝐶 ∈ ran (𝑅 ↾ 𝐴) ∧ (𝐵 ∈ 𝐴 ∧ 𝐵𝑅𝐶))) |
3 | relres 5584 | . . . 4 ⊢ Rel (𝑅 ↾ 𝐴) | |
4 | 3 | relelrni 5518 | . . 3 ⊢ (𝐵(𝑅 ↾ 𝐴)𝐶 → 𝐶 ∈ ran (𝑅 ↾ 𝐴)) |
5 | 4 | pm4.71ri 668 | . 2 ⊢ (𝐵(𝑅 ↾ 𝐴)𝐶 ↔ (𝐶 ∈ ran (𝑅 ↾ 𝐴) ∧ 𝐵(𝑅 ↾ 𝐴)𝐶)) |
6 | brinxp2ALTV 34358 | . . 3 ⊢ (𝐵(𝑅 ∩ (𝐴 × ran (𝑅 ↾ 𝐴)))𝐶 ↔ ((𝐵 ∈ 𝐴 ∧ 𝐶 ∈ ran (𝑅 ↾ 𝐴)) ∧ 𝐵𝑅𝐶)) | |
7 | df-3an 1074 | . . 3 ⊢ ((𝐵 ∈ 𝐴 ∧ 𝐶 ∈ ran (𝑅 ↾ 𝐴) ∧ 𝐵𝑅𝐶) ↔ ((𝐵 ∈ 𝐴 ∧ 𝐶 ∈ ran (𝑅 ↾ 𝐴)) ∧ 𝐵𝑅𝐶)) | |
8 | 3anan12 1082 | . . 3 ⊢ ((𝐵 ∈ 𝐴 ∧ 𝐶 ∈ ran (𝑅 ↾ 𝐴) ∧ 𝐵𝑅𝐶) ↔ (𝐶 ∈ ran (𝑅 ↾ 𝐴) ∧ (𝐵 ∈ 𝐴 ∧ 𝐵𝑅𝐶))) | |
9 | 6, 7, 8 | 3bitr2i 288 | . 2 ⊢ (𝐵(𝑅 ∩ (𝐴 × ran (𝑅 ↾ 𝐴)))𝐶 ↔ (𝐶 ∈ ran (𝑅 ↾ 𝐴) ∧ (𝐵 ∈ 𝐴 ∧ 𝐵𝑅𝐶))) |
10 | 2, 5, 9 | 3bitr4i 292 | 1 ⊢ (𝐵(𝑅 ↾ 𝐴)𝐶 ↔ 𝐵(𝑅 ∩ (𝐴 × ran (𝑅 ↾ 𝐴)))𝐶) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 ∧ wa 383 ∧ w3a 1072 ∈ wcel 2139 ∩ cin 3714 class class class wbr 4804 × cxp 5264 ran crn 5267 ↾ cres 5268 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pr 5055 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ral 3055 df-rex 3056 df-rab 3059 df-v 3342 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-sn 4322 df-pr 4324 df-op 4328 df-br 4805 df-opab 4865 df-xp 5272 df-rel 5273 df-cnv 5274 df-dm 5276 df-rn 5277 df-res 5278 |
This theorem is referenced by: brinxprnres 34383 |
Copyright terms: Public domain | W3C validator |