![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > brrelex2i | Structured version Visualization version GIF version |
Description: The second argument of a binary relation exists. (An artifact of our ordered pair definition.) (Contributed by Mario Carneiro, 26-Apr-2015.) |
Ref | Expression |
---|---|
brrelexi.1 | ⊢ Rel 𝑅 |
Ref | Expression |
---|---|
brrelex2i | ⊢ (𝐴𝑅𝐵 → 𝐵 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brrelexi.1 | . 2 ⊢ Rel 𝑅 | |
2 | brrelex2 5266 | . 2 ⊢ ((Rel 𝑅 ∧ 𝐴𝑅𝐵) → 𝐵 ∈ V) | |
3 | 1, 2 | mpan 708 | 1 ⊢ (𝐴𝑅𝐵 → 𝐵 ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2103 Vcvv 3304 class class class wbr 4760 Rel wrel 5223 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1835 ax-4 1850 ax-5 1952 ax-6 2018 ax-7 2054 ax-9 2112 ax-10 2132 ax-11 2147 ax-12 2160 ax-13 2355 ax-ext 2704 ax-sep 4889 ax-nul 4897 ax-pr 5011 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1599 df-ex 1818 df-nf 1823 df-sb 2011 df-clab 2711 df-cleq 2717 df-clel 2720 df-nfc 2855 df-ral 3019 df-rex 3020 df-rab 3023 df-v 3306 df-dif 3683 df-un 3685 df-in 3687 df-ss 3694 df-nul 4024 df-if 4195 df-sn 4286 df-pr 4288 df-op 4292 df-br 4761 df-opab 4821 df-xp 5224 df-rel 5225 |
This theorem is referenced by: vtoclr 5273 brfvopabrbr 6393 brdomi 8083 domdifsn 8159 undom 8164 xpdom2 8171 xpdom1g 8173 domunsncan 8176 enfixsn 8185 fodomr 8227 pwdom 8228 domssex 8237 xpen 8239 mapdom1 8241 mapdom2 8247 pwen 8249 sucdom2 8272 unxpdom 8283 unxpdom2 8284 sucxpdom 8285 isfinite2 8334 infn0 8338 fin2inf 8339 fsuppimp 8397 suppeqfsuppbi 8405 fsuppsssupp 8407 fsuppunbi 8412 funsnfsupp 8415 mapfien2 8430 wemapso2 8574 card2on 8575 elharval 8584 harword 8586 brwdomi 8589 brwdomn0 8590 domwdom 8595 wdomtr 8596 wdompwdom 8599 canthwdom 8600 brwdom3i 8604 unwdomg 8605 xpwdomg 8606 unxpwdom 8610 infdifsn 8667 infdiffi 8668 isnum2 8884 wdomfil 8997 cdaen 9108 cdaenun 9109 cdadom1 9121 cdaxpdom 9124 cdainf 9127 infcda1 9128 pwcdaidm 9130 cdalepw 9131 infpss 9152 infmap2 9153 fictb 9180 infpssALT 9248 enfin2i 9256 fin34 9325 fodomb 9461 wdomac 9462 iundom2g 9475 iundom 9477 sdomsdomcard 9495 infxpidm 9497 engch 9563 fpwwe2lem3 9568 canthp1lem1 9587 canthp1lem2 9588 canthp1 9589 pwfseq 9599 pwxpndom2 9600 pwxpndom 9601 pwcdandom 9602 hargch 9608 gchaclem 9613 hasheni 13251 hashdomi 13282 brfi1indALT 13395 clim 14345 rlim 14346 ntrivcvgn0 14750 ssc1 16603 ssc2 16604 ssctr 16607 frgpnabl 18399 dprddomprc 18520 dprdval 18523 dprdgrp 18525 dprdf 18526 dprdssv 18536 subgdmdprd 18554 dprd2da 18562 1stcrestlem 21378 hauspwdom 21427 isref 21435 ufilen 21856 dvle 23890 subgrv 26282 locfinref 30138 isfne4 32562 fnetr 32573 topfneec 32577 fnessref 32579 refssfne 32580 phpreu 33625 climf 40274 climf2 40318 linindsv 42661 |
Copyright terms: Public domain | W3C validator |