![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > brrelex12 | Structured version Visualization version GIF version |
Description: A true binary relation on a relation implies the arguments are sets. (This is a property of our ordered pair definition.) (Contributed by Mario Carneiro, 26-Apr-2015.) |
Ref | Expression |
---|---|
brrelex12 | ⊢ ((Rel 𝑅 ∧ 𝐴𝑅𝐵) → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rel 5256 | . . . . 5 ⊢ (Rel 𝑅 ↔ 𝑅 ⊆ (V × V)) | |
2 | 1 | biimpi 206 | . . . 4 ⊢ (Rel 𝑅 → 𝑅 ⊆ (V × V)) |
3 | 2 | ssbrd 4827 | . . 3 ⊢ (Rel 𝑅 → (𝐴𝑅𝐵 → 𝐴(V × V)𝐵)) |
4 | 3 | imp 393 | . 2 ⊢ ((Rel 𝑅 ∧ 𝐴𝑅𝐵) → 𝐴(V × V)𝐵) |
5 | brxp 5287 | . 2 ⊢ (𝐴(V × V)𝐵 ↔ (𝐴 ∈ V ∧ 𝐵 ∈ V)) | |
6 | 4, 5 | sylib 208 | 1 ⊢ ((Rel 𝑅 ∧ 𝐴𝑅𝐵) → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 382 ∈ wcel 2144 Vcvv 3349 ⊆ wss 3721 class class class wbr 4784 × cxp 5247 Rel wrel 5254 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1990 ax-6 2056 ax-7 2092 ax-9 2153 ax-10 2173 ax-11 2189 ax-12 2202 ax-13 2407 ax-ext 2750 ax-sep 4912 ax-nul 4920 ax-pr 5034 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 827 df-3an 1072 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2049 df-clab 2757 df-cleq 2763 df-clel 2766 df-nfc 2901 df-ral 3065 df-rex 3066 df-rab 3069 df-v 3351 df-dif 3724 df-un 3726 df-in 3728 df-ss 3735 df-nul 4062 df-if 4224 df-sn 4315 df-pr 4317 df-op 4321 df-br 4785 df-opab 4845 df-xp 5255 df-rel 5256 |
This theorem is referenced by: brrelex 5296 brrelex2 5297 nprrel12 5300 relbrcnvg 5645 ovprc 6827 oprabv 6849 brovex 7499 ersym 7907 relelec 7938 encv 8116 fsuppunbi 8451 fpwwe2lem2 9655 fpwwelem 9668 brfi1uzind 13481 isstruct2 16073 brssc 16680 cofuval2 16753 isfull 16776 isfth 16780 isnat 16813 pslem 17413 frgpuplem 18391 dvdsr 18853 ulmval 24353 perpln1 25825 perpln2 25826 opelco3 32008 rngoablo2 34033 aovprc 41782 aovrcl 41783 nelbrim 41809 |
Copyright terms: Public domain | W3C validator |