MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  brrelex Structured version   Visualization version   GIF version

Theorem brrelex 5126
Description: A true binary relation on a relation implies the first argument is a set. (This is a property of our ordered pair definition.) (Contributed by NM, 18-May-2004.) (Revised by Mario Carneiro, 26-Apr-2015.)
Assertion
Ref Expression
brrelex ((Rel 𝑅𝐴𝑅𝐵) → 𝐴 ∈ V)

Proof of Theorem brrelex
StepHypRef Expression
1 brrelex12 5125 . 2 ((Rel 𝑅𝐴𝑅𝐵) → (𝐴 ∈ V ∧ 𝐵 ∈ V))
21simpld 475 1 ((Rel 𝑅𝐴𝑅𝐵) → 𝐴 ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  wcel 1987  Vcvv 3190   class class class wbr 4623  Rel wrel 5089
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4751  ax-nul 4759  ax-pr 4877
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ral 2913  df-rex 2914  df-rab 2917  df-v 3192  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-nul 3898  df-if 4065  df-sn 4156  df-pr 4158  df-op 4162  df-br 4624  df-opab 4684  df-xp 5090  df-rel 5091
This theorem is referenced by:  brrelexi  5128  posn  5158  frsn  5160  releldm  5328  relelrn  5329  relimasn  5457  funmo  5873  ertr  7717  dirtr  17176  frege129d  37575  nnfoctb  38735  clim2d  39341  climfv  39359  meadjiun  40020  caragenunicl  40075
  Copyright terms: Public domain W3C validator