![]() |
Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > brrangeg | Structured version Visualization version GIF version |
Description: Closed form of brrange 32378. (Contributed by Scott Fenton, 3-May-2014.) |
Ref | Expression |
---|---|
brrangeg | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴Range𝐵 ↔ 𝐵 = ran 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq1 4789 | . . 3 ⊢ (𝑎 = 𝐴 → (𝑎Range𝑏 ↔ 𝐴Range𝑏)) | |
2 | rneq 5489 | . . . 4 ⊢ (𝑎 = 𝐴 → ran 𝑎 = ran 𝐴) | |
3 | 2 | eqeq2d 2781 | . . 3 ⊢ (𝑎 = 𝐴 → (𝑏 = ran 𝑎 ↔ 𝑏 = ran 𝐴)) |
4 | 1, 3 | bibi12d 334 | . 2 ⊢ (𝑎 = 𝐴 → ((𝑎Range𝑏 ↔ 𝑏 = ran 𝑎) ↔ (𝐴Range𝑏 ↔ 𝑏 = ran 𝐴))) |
5 | breq2 4790 | . . 3 ⊢ (𝑏 = 𝐵 → (𝐴Range𝑏 ↔ 𝐴Range𝐵)) | |
6 | eqeq1 2775 | . . 3 ⊢ (𝑏 = 𝐵 → (𝑏 = ran 𝐴 ↔ 𝐵 = ran 𝐴)) | |
7 | 5, 6 | bibi12d 334 | . 2 ⊢ (𝑏 = 𝐵 → ((𝐴Range𝑏 ↔ 𝑏 = ran 𝐴) ↔ (𝐴Range𝐵 ↔ 𝐵 = ran 𝐴))) |
8 | vex 3354 | . . 3 ⊢ 𝑎 ∈ V | |
9 | vex 3354 | . . 3 ⊢ 𝑏 ∈ V | |
10 | 8, 9 | brrange 32378 | . 2 ⊢ (𝑎Range𝑏 ↔ 𝑏 = ran 𝑎) |
11 | 4, 7, 10 | vtocl2g 3421 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴Range𝐵 ↔ 𝐵 = ran 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 382 = wceq 1631 ∈ wcel 2145 class class class wbr 4786 ran crn 5250 Rangecrange 32288 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-sep 4915 ax-nul 4923 ax-pow 4974 ax-pr 5034 ax-un 7096 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 835 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3353 df-sbc 3588 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-symdif 3993 df-nul 4064 df-if 4226 df-sn 4317 df-pr 4319 df-op 4323 df-uni 4575 df-br 4787 df-opab 4847 df-mpt 4864 df-id 5157 df-eprel 5162 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-fo 6037 df-fv 6039 df-1st 7315 df-2nd 7316 df-txp 32298 df-image 32308 df-range 32312 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |