![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > brovpreldm | Structured version Visualization version GIF version |
Description: If a binary relation holds for the result of an operation, the operands are in the domain of the operation. (Contributed by AV, 31-Dec-2020.) |
Ref | Expression |
---|---|
brovpreldm | ⊢ (𝐷(𝐵𝐴𝐶)𝐸 → 〈𝐵, 𝐶〉 ∈ dom 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-br 4805 | . 2 ⊢ (𝐷(𝐵𝐴𝐶)𝐸 ↔ 〈𝐷, 𝐸〉 ∈ (𝐵𝐴𝐶)) | |
2 | ne0i 4064 | . . 3 ⊢ (〈𝐷, 𝐸〉 ∈ (𝐵𝐴𝐶) → (𝐵𝐴𝐶) ≠ ∅) | |
3 | df-ov 6817 | . . . . 5 ⊢ (𝐵𝐴𝐶) = (𝐴‘〈𝐵, 𝐶〉) | |
4 | ndmfv 6380 | . . . . 5 ⊢ (¬ 〈𝐵, 𝐶〉 ∈ dom 𝐴 → (𝐴‘〈𝐵, 𝐶〉) = ∅) | |
5 | 3, 4 | syl5eq 2806 | . . . 4 ⊢ (¬ 〈𝐵, 𝐶〉 ∈ dom 𝐴 → (𝐵𝐴𝐶) = ∅) |
6 | 5 | necon1ai 2959 | . . 3 ⊢ ((𝐵𝐴𝐶) ≠ ∅ → 〈𝐵, 𝐶〉 ∈ dom 𝐴) |
7 | 2, 6 | syl 17 | . 2 ⊢ (〈𝐷, 𝐸〉 ∈ (𝐵𝐴𝐶) → 〈𝐵, 𝐶〉 ∈ dom 𝐴) |
8 | 1, 7 | sylbi 207 | 1 ⊢ (𝐷(𝐵𝐴𝐶)𝐸 → 〈𝐵, 𝐶〉 ∈ dom 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2139 ≠ wne 2932 ∅c0 4058 〈cop 4327 class class class wbr 4804 dom cdm 5266 ‘cfv 6049 (class class class)co 6814 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-nul 4941 ax-pow 4992 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-ral 3055 df-rex 3056 df-rab 3059 df-v 3342 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-sn 4322 df-pr 4324 df-op 4328 df-uni 4589 df-br 4805 df-dm 5276 df-iota 6012 df-fv 6057 df-ov 6817 |
This theorem is referenced by: bropopvvv 7424 bropfvvvv 7426 |
Copyright terms: Public domain | W3C validator |