![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > brovmptimex | Structured version Visualization version GIF version |
Description: If a binary relation holds and the relation is the value of a binary operation built with maps-to, then the arguments to that operation are sets. (Contributed by RP, 22-May-2021.) |
Ref | Expression |
---|---|
brovmptimex.mpt | ⊢ 𝐹 = (𝑥 ∈ 𝐸, 𝑦 ∈ 𝐺 ↦ 𝐻) |
brovmptimex.br | ⊢ (𝜑 → 𝐴𝑅𝐵) |
brovmptimex.ov | ⊢ (𝜑 → 𝑅 = (𝐶𝐹𝐷)) |
Ref | Expression |
---|---|
brovmptimex | ⊢ (𝜑 → (𝐶 ∈ V ∧ 𝐷 ∈ V)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brovmptimex.ov | . . 3 ⊢ (𝜑 → 𝑅 = (𝐶𝐹𝐷)) | |
2 | brovmptimex.br | . . 3 ⊢ (𝜑 → 𝐴𝑅𝐵) | |
3 | 1, 2 | breqdi 4799 | . 2 ⊢ (𝜑 → 𝐴(𝐶𝐹𝐷)𝐵) |
4 | brne0 4834 | . 2 ⊢ (𝐴(𝐶𝐹𝐷)𝐵 → (𝐶𝐹𝐷) ≠ ∅) | |
5 | brovmptimex.mpt | . . . . 5 ⊢ 𝐹 = (𝑥 ∈ 𝐸, 𝑦 ∈ 𝐺 ↦ 𝐻) | |
6 | 5 | reldmmpt2 6917 | . . . 4 ⊢ Rel dom 𝐹 |
7 | 6 | ovprc 6827 | . . 3 ⊢ (¬ (𝐶 ∈ V ∧ 𝐷 ∈ V) → (𝐶𝐹𝐷) = ∅) |
8 | 7 | necon1ai 2969 | . 2 ⊢ ((𝐶𝐹𝐷) ≠ ∅ → (𝐶 ∈ V ∧ 𝐷 ∈ V)) |
9 | 3, 4, 8 | 3syl 18 | 1 ⊢ (𝜑 → (𝐶 ∈ V ∧ 𝐷 ∈ V)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 382 = wceq 1630 ∈ wcel 2144 ≠ wne 2942 Vcvv 3349 ∅c0 4061 class class class wbr 4784 (class class class)co 6792 ↦ cmpt2 6794 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1990 ax-6 2056 ax-7 2092 ax-8 2146 ax-9 2153 ax-10 2173 ax-11 2189 ax-12 2202 ax-13 2407 ax-ext 2750 ax-sep 4912 ax-nul 4920 ax-pow 4971 ax-pr 5034 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 827 df-3an 1072 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2049 df-eu 2621 df-mo 2622 df-clab 2757 df-cleq 2763 df-clel 2766 df-nfc 2901 df-ne 2943 df-ral 3065 df-rex 3066 df-rab 3069 df-v 3351 df-dif 3724 df-un 3726 df-in 3728 df-ss 3735 df-nul 4062 df-if 4224 df-sn 4315 df-pr 4317 df-op 4321 df-uni 4573 df-br 4785 df-opab 4845 df-xp 5255 df-rel 5256 df-dm 5259 df-iota 5994 df-fv 6039 df-ov 6795 df-oprab 6796 df-mpt2 6797 |
This theorem is referenced by: brovmptimex1 38845 brovmptimex2 38846 |
Copyright terms: Public domain | W3C validator |