Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  bropfvvvv Structured version   Visualization version   GIF version

Theorem bropfvvvv 7426
 Description: If a binary relation holds for the result of an operation which is a function value, the involved classes are sets. (Contributed by AV, 31-Dec-2020.) (Revised by AV, 16-Jan-2021.)
Hypotheses
Ref Expression
bropfvvvv.o 𝑂 = (𝑎𝑈 ↦ (𝑏𝑉, 𝑐𝑊 ↦ {⟨𝑑, 𝑒⟩ ∣ 𝜑}))
bropfvvvv.oo ((𝐴𝑈𝐵𝑆𝐶𝑇) → (𝐵(𝑂𝐴)𝐶) = {⟨𝑑, 𝑒⟩ ∣ 𝜃})
bropfvvvv.s (𝑎 = 𝐴𝑉 = 𝑆)
bropfvvvv.t (𝑎 = 𝐴𝑊 = 𝑇)
bropfvvvv.p (𝑎 = 𝐴 → (𝜑𝜓))
Assertion
Ref Expression
bropfvvvv ((𝑆𝑋𝑇𝑌) → (𝐷(𝐵(𝑂𝐴)𝐶)𝐸 → (𝐴𝑈 ∧ (𝐵𝑆𝐶𝑇) ∧ (𝐷 ∈ V ∧ 𝐸 ∈ V))))
Distinct variable groups:   𝑈,𝑎   𝐴,𝑎,𝑏,𝑐,𝑑,𝑒   𝑆,𝑎,𝑏,𝑐   𝑇,𝑎,𝑏,𝑐   𝜓,𝑎
Allowed substitution hints:   𝜑(𝑒,𝑎,𝑏,𝑐,𝑑)   𝜓(𝑒,𝑏,𝑐,𝑑)   𝜃(𝑒,𝑎,𝑏,𝑐,𝑑)   𝐵(𝑒,𝑎,𝑏,𝑐,𝑑)   𝐶(𝑒,𝑎,𝑏,𝑐,𝑑)   𝐷(𝑒,𝑎,𝑏,𝑐,𝑑)   𝑆(𝑒,𝑑)   𝑇(𝑒,𝑑)   𝑈(𝑒,𝑏,𝑐,𝑑)   𝐸(𝑒,𝑎,𝑏,𝑐,𝑑)   𝑂(𝑒,𝑎,𝑏,𝑐,𝑑)   𝑉(𝑒,𝑎,𝑏,𝑐,𝑑)   𝑊(𝑒,𝑎,𝑏,𝑐,𝑑)   𝑋(𝑒,𝑎,𝑏,𝑐,𝑑)   𝑌(𝑒,𝑎,𝑏,𝑐,𝑑)

Proof of Theorem bropfvvvv
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 brovpreldm 7423 . 2 (𝐷(𝐵(𝑂𝐴)𝐶)𝐸 → ⟨𝐵, 𝐶⟩ ∈ dom (𝑂𝐴))
2 bropfvvvv.o . . . . . . . . . 10 𝑂 = (𝑎𝑈 ↦ (𝑏𝑉, 𝑐𝑊 ↦ {⟨𝑑, 𝑒⟩ ∣ 𝜑}))
32a1i 11 . . . . . . . . 9 ((𝐴𝑈 ∧ (𝑏𝑆, 𝑐𝑇 ↦ {⟨𝑑, 𝑒⟩ ∣ 𝜓}) ∈ V) → 𝑂 = (𝑎𝑈 ↦ (𝑏𝑉, 𝑐𝑊 ↦ {⟨𝑑, 𝑒⟩ ∣ 𝜑})))
4 bropfvvvv.s . . . . . . . . . . 11 (𝑎 = 𝐴𝑉 = 𝑆)
5 bropfvvvv.t . . . . . . . . . . 11 (𝑎 = 𝐴𝑊 = 𝑇)
6 bropfvvvv.p . . . . . . . . . . . 12 (𝑎 = 𝐴 → (𝜑𝜓))
76opabbidv 4868 . . . . . . . . . . 11 (𝑎 = 𝐴 → {⟨𝑑, 𝑒⟩ ∣ 𝜑} = {⟨𝑑, 𝑒⟩ ∣ 𝜓})
84, 5, 7mpt2eq123dv 6883 . . . . . . . . . 10 (𝑎 = 𝐴 → (𝑏𝑉, 𝑐𝑊 ↦ {⟨𝑑, 𝑒⟩ ∣ 𝜑}) = (𝑏𝑆, 𝑐𝑇 ↦ {⟨𝑑, 𝑒⟩ ∣ 𝜓}))
98adantl 473 . . . . . . . . 9 (((𝐴𝑈 ∧ (𝑏𝑆, 𝑐𝑇 ↦ {⟨𝑑, 𝑒⟩ ∣ 𝜓}) ∈ V) ∧ 𝑎 = 𝐴) → (𝑏𝑉, 𝑐𝑊 ↦ {⟨𝑑, 𝑒⟩ ∣ 𝜑}) = (𝑏𝑆, 𝑐𝑇 ↦ {⟨𝑑, 𝑒⟩ ∣ 𝜓}))
10 simpl 474 . . . . . . . . 9 ((𝐴𝑈 ∧ (𝑏𝑆, 𝑐𝑇 ↦ {⟨𝑑, 𝑒⟩ ∣ 𝜓}) ∈ V) → 𝐴𝑈)
11 simpr 479 . . . . . . . . 9 ((𝐴𝑈 ∧ (𝑏𝑆, 𝑐𝑇 ↦ {⟨𝑑, 𝑒⟩ ∣ 𝜓}) ∈ V) → (𝑏𝑆, 𝑐𝑇 ↦ {⟨𝑑, 𝑒⟩ ∣ 𝜓}) ∈ V)
123, 9, 10, 11fvmptd 6451 . . . . . . . 8 ((𝐴𝑈 ∧ (𝑏𝑆, 𝑐𝑇 ↦ {⟨𝑑, 𝑒⟩ ∣ 𝜓}) ∈ V) → (𝑂𝐴) = (𝑏𝑆, 𝑐𝑇 ↦ {⟨𝑑, 𝑒⟩ ∣ 𝜓}))
1312dmeqd 5481 . . . . . . 7 ((𝐴𝑈 ∧ (𝑏𝑆, 𝑐𝑇 ↦ {⟨𝑑, 𝑒⟩ ∣ 𝜓}) ∈ V) → dom (𝑂𝐴) = dom (𝑏𝑆, 𝑐𝑇 ↦ {⟨𝑑, 𝑒⟩ ∣ 𝜓}))
1413eleq2d 2825 . . . . . 6 ((𝐴𝑈 ∧ (𝑏𝑆, 𝑐𝑇 ↦ {⟨𝑑, 𝑒⟩ ∣ 𝜓}) ∈ V) → (⟨𝐵, 𝐶⟩ ∈ dom (𝑂𝐴) ↔ ⟨𝐵, 𝐶⟩ ∈ dom (𝑏𝑆, 𝑐𝑇 ↦ {⟨𝑑, 𝑒⟩ ∣ 𝜓})))
15 dmoprabss 6908 . . . . . . . . 9 dom {⟨⟨𝑏, 𝑐⟩, 𝑧⟩ ∣ ((𝑏𝑆𝑐𝑇) ∧ 𝑧 = {⟨𝑑, 𝑒⟩ ∣ 𝜓})} ⊆ (𝑆 × 𝑇)
1615sseli 3740 . . . . . . . 8 (⟨𝐵, 𝐶⟩ ∈ dom {⟨⟨𝑏, 𝑐⟩, 𝑧⟩ ∣ ((𝑏𝑆𝑐𝑇) ∧ 𝑧 = {⟨𝑑, 𝑒⟩ ∣ 𝜓})} → ⟨𝐵, 𝐶⟩ ∈ (𝑆 × 𝑇))
17 bropfvvvv.oo . . . . . . . . . 10 ((𝐴𝑈𝐵𝑆𝐶𝑇) → (𝐵(𝑂𝐴)𝐶) = {⟨𝑑, 𝑒⟩ ∣ 𝜃})
182, 17bropfvvvvlem 7425 . . . . . . . . 9 ((⟨𝐵, 𝐶⟩ ∈ (𝑆 × 𝑇) ∧ 𝐷(𝐵(𝑂𝐴)𝐶)𝐸) → (𝐴𝑈 ∧ (𝐵𝑆𝐶𝑇) ∧ (𝐷 ∈ V ∧ 𝐸 ∈ V)))
1918ex 449 . . . . . . . 8 (⟨𝐵, 𝐶⟩ ∈ (𝑆 × 𝑇) → (𝐷(𝐵(𝑂𝐴)𝐶)𝐸 → (𝐴𝑈 ∧ (𝐵𝑆𝐶𝑇) ∧ (𝐷 ∈ V ∧ 𝐸 ∈ V))))
2016, 19syl 17 . . . . . . 7 (⟨𝐵, 𝐶⟩ ∈ dom {⟨⟨𝑏, 𝑐⟩, 𝑧⟩ ∣ ((𝑏𝑆𝑐𝑇) ∧ 𝑧 = {⟨𝑑, 𝑒⟩ ∣ 𝜓})} → (𝐷(𝐵(𝑂𝐴)𝐶)𝐸 → (𝐴𝑈 ∧ (𝐵𝑆𝐶𝑇) ∧ (𝐷 ∈ V ∧ 𝐸 ∈ V))))
21 df-mpt2 6819 . . . . . . . 8 (𝑏𝑆, 𝑐𝑇 ↦ {⟨𝑑, 𝑒⟩ ∣ 𝜓}) = {⟨⟨𝑏, 𝑐⟩, 𝑧⟩ ∣ ((𝑏𝑆𝑐𝑇) ∧ 𝑧 = {⟨𝑑, 𝑒⟩ ∣ 𝜓})}
2221dmeqi 5480 . . . . . . 7 dom (𝑏𝑆, 𝑐𝑇 ↦ {⟨𝑑, 𝑒⟩ ∣ 𝜓}) = dom {⟨⟨𝑏, 𝑐⟩, 𝑧⟩ ∣ ((𝑏𝑆𝑐𝑇) ∧ 𝑧 = {⟨𝑑, 𝑒⟩ ∣ 𝜓})}
2320, 22eleq2s 2857 . . . . . 6 (⟨𝐵, 𝐶⟩ ∈ dom (𝑏𝑆, 𝑐𝑇 ↦ {⟨𝑑, 𝑒⟩ ∣ 𝜓}) → (𝐷(𝐵(𝑂𝐴)𝐶)𝐸 → (𝐴𝑈 ∧ (𝐵𝑆𝐶𝑇) ∧ (𝐷 ∈ V ∧ 𝐸 ∈ V))))
2414, 23syl6bi 243 . . . . 5 ((𝐴𝑈 ∧ (𝑏𝑆, 𝑐𝑇 ↦ {⟨𝑑, 𝑒⟩ ∣ 𝜓}) ∈ V) → (⟨𝐵, 𝐶⟩ ∈ dom (𝑂𝐴) → (𝐷(𝐵(𝑂𝐴)𝐶)𝐸 → (𝐴𝑈 ∧ (𝐵𝑆𝐶𝑇) ∧ (𝐷 ∈ V ∧ 𝐸 ∈ V)))))
2524com23 86 . . . 4 ((𝐴𝑈 ∧ (𝑏𝑆, 𝑐𝑇 ↦ {⟨𝑑, 𝑒⟩ ∣ 𝜓}) ∈ V) → (𝐷(𝐵(𝑂𝐴)𝐶)𝐸 → (⟨𝐵, 𝐶⟩ ∈ dom (𝑂𝐴) → (𝐴𝑈 ∧ (𝐵𝑆𝐶𝑇) ∧ (𝐷 ∈ V ∧ 𝐸 ∈ V)))))
2625a1d 25 . . 3 ((𝐴𝑈 ∧ (𝑏𝑆, 𝑐𝑇 ↦ {⟨𝑑, 𝑒⟩ ∣ 𝜓}) ∈ V) → ((𝑆𝑋𝑇𝑌) → (𝐷(𝐵(𝑂𝐴)𝐶)𝐸 → (⟨𝐵, 𝐶⟩ ∈ dom (𝑂𝐴) → (𝐴𝑈 ∧ (𝐵𝑆𝐶𝑇) ∧ (𝐷 ∈ V ∧ 𝐸 ∈ V))))))
27 ianor 510 . . . . 5 (¬ (𝐴𝑈 ∧ (𝑏𝑆, 𝑐𝑇 ↦ {⟨𝑑, 𝑒⟩ ∣ 𝜓}) ∈ V) ↔ (¬ 𝐴𝑈 ∨ ¬ (𝑏𝑆, 𝑐𝑇 ↦ {⟨𝑑, 𝑒⟩ ∣ 𝜓}) ∈ V))
282fvmptndm 6471 . . . . . . . . . . 11 𝐴𝑈 → (𝑂𝐴) = ∅)
2928dmeqd 5481 . . . . . . . . . 10 𝐴𝑈 → dom (𝑂𝐴) = dom ∅)
3029eleq2d 2825 . . . . . . . . 9 𝐴𝑈 → (⟨𝐵, 𝐶⟩ ∈ dom (𝑂𝐴) ↔ ⟨𝐵, 𝐶⟩ ∈ dom ∅))
31 dm0 5494 . . . . . . . . . 10 dom ∅ = ∅
3231eleq2i 2831 . . . . . . . . 9 (⟨𝐵, 𝐶⟩ ∈ dom ∅ ↔ ⟨𝐵, 𝐶⟩ ∈ ∅)
3330, 32syl6bb 276 . . . . . . . 8 𝐴𝑈 → (⟨𝐵, 𝐶⟩ ∈ dom (𝑂𝐴) ↔ ⟨𝐵, 𝐶⟩ ∈ ∅))
34 noel 4062 . . . . . . . . 9 ¬ ⟨𝐵, 𝐶⟩ ∈ ∅
3534pm2.21i 116 . . . . . . . 8 (⟨𝐵, 𝐶⟩ ∈ ∅ → (𝐷(𝐵(𝑂𝐴)𝐶)𝐸 → (𝐴𝑈 ∧ (𝐵𝑆𝐶𝑇) ∧ (𝐷 ∈ V ∧ 𝐸 ∈ V))))
3633, 35syl6bi 243 . . . . . . 7 𝐴𝑈 → (⟨𝐵, 𝐶⟩ ∈ dom (𝑂𝐴) → (𝐷(𝐵(𝑂𝐴)𝐶)𝐸 → (𝐴𝑈 ∧ (𝐵𝑆𝐶𝑇) ∧ (𝐷 ∈ V ∧ 𝐸 ∈ V)))))
3736a1d 25 . . . . . 6 𝐴𝑈 → ((𝑆𝑋𝑇𝑌) → (⟨𝐵, 𝐶⟩ ∈ dom (𝑂𝐴) → (𝐷(𝐵(𝑂𝐴)𝐶)𝐸 → (𝐴𝑈 ∧ (𝐵𝑆𝐶𝑇) ∧ (𝐷 ∈ V ∧ 𝐸 ∈ V))))))
38 notnotb 304 . . . . . . . 8 (𝐴𝑈 ↔ ¬ ¬ 𝐴𝑈)
39 elex 3352 . . . . . . . . . . . . . 14 (𝑆𝑋𝑆 ∈ V)
40 elex 3352 . . . . . . . . . . . . . 14 (𝑇𝑌𝑇 ∈ V)
4139, 40anim12i 591 . . . . . . . . . . . . 13 ((𝑆𝑋𝑇𝑌) → (𝑆 ∈ V ∧ 𝑇 ∈ V))
4241adantl 473 . . . . . . . . . . . 12 ((𝐴𝑈 ∧ (𝑆𝑋𝑇𝑌)) → (𝑆 ∈ V ∧ 𝑇 ∈ V))
43 mpt2exga 7415 . . . . . . . . . . . 12 ((𝑆 ∈ V ∧ 𝑇 ∈ V) → (𝑏𝑆, 𝑐𝑇 ↦ {⟨𝑑, 𝑒⟩ ∣ 𝜓}) ∈ V)
4442, 43syl 17 . . . . . . . . . . 11 ((𝐴𝑈 ∧ (𝑆𝑋𝑇𝑌)) → (𝑏𝑆, 𝑐𝑇 ↦ {⟨𝑑, 𝑒⟩ ∣ 𝜓}) ∈ V)
4544pm2.24d 147 . . . . . . . . . 10 ((𝐴𝑈 ∧ (𝑆𝑋𝑇𝑌)) → (¬ (𝑏𝑆, 𝑐𝑇 ↦ {⟨𝑑, 𝑒⟩ ∣ 𝜓}) ∈ V → (⟨𝐵, 𝐶⟩ ∈ dom (𝑂𝐴) → (𝐷(𝐵(𝑂𝐴)𝐶)𝐸 → (𝐴𝑈 ∧ (𝐵𝑆𝐶𝑇) ∧ (𝐷 ∈ V ∧ 𝐸 ∈ V))))))
4645ex 449 . . . . . . . . 9 (𝐴𝑈 → ((𝑆𝑋𝑇𝑌) → (¬ (𝑏𝑆, 𝑐𝑇 ↦ {⟨𝑑, 𝑒⟩ ∣ 𝜓}) ∈ V → (⟨𝐵, 𝐶⟩ ∈ dom (𝑂𝐴) → (𝐷(𝐵(𝑂𝐴)𝐶)𝐸 → (𝐴𝑈 ∧ (𝐵𝑆𝐶𝑇) ∧ (𝐷 ∈ V ∧ 𝐸 ∈ V)))))))
4746com23 86 . . . . . . . 8 (𝐴𝑈 → (¬ (𝑏𝑆, 𝑐𝑇 ↦ {⟨𝑑, 𝑒⟩ ∣ 𝜓}) ∈ V → ((𝑆𝑋𝑇𝑌) → (⟨𝐵, 𝐶⟩ ∈ dom (𝑂𝐴) → (𝐷(𝐵(𝑂𝐴)𝐶)𝐸 → (𝐴𝑈 ∧ (𝐵𝑆𝐶𝑇) ∧ (𝐷 ∈ V ∧ 𝐸 ∈ V)))))))
4838, 47sylbir 225 . . . . . . 7 (¬ ¬ 𝐴𝑈 → (¬ (𝑏𝑆, 𝑐𝑇 ↦ {⟨𝑑, 𝑒⟩ ∣ 𝜓}) ∈ V → ((𝑆𝑋𝑇𝑌) → (⟨𝐵, 𝐶⟩ ∈ dom (𝑂𝐴) → (𝐷(𝐵(𝑂𝐴)𝐶)𝐸 → (𝐴𝑈 ∧ (𝐵𝑆𝐶𝑇) ∧ (𝐷 ∈ V ∧ 𝐸 ∈ V)))))))
4948imp 444 . . . . . 6 ((¬ ¬ 𝐴𝑈 ∧ ¬ (𝑏𝑆, 𝑐𝑇 ↦ {⟨𝑑, 𝑒⟩ ∣ 𝜓}) ∈ V) → ((𝑆𝑋𝑇𝑌) → (⟨𝐵, 𝐶⟩ ∈ dom (𝑂𝐴) → (𝐷(𝐵(𝑂𝐴)𝐶)𝐸 → (𝐴𝑈 ∧ (𝐵𝑆𝐶𝑇) ∧ (𝐷 ∈ V ∧ 𝐸 ∈ V))))))
5037, 49jaoi3 1049 . . . . 5 ((¬ 𝐴𝑈 ∨ ¬ (𝑏𝑆, 𝑐𝑇 ↦ {⟨𝑑, 𝑒⟩ ∣ 𝜓}) ∈ V) → ((𝑆𝑋𝑇𝑌) → (⟨𝐵, 𝐶⟩ ∈ dom (𝑂𝐴) → (𝐷(𝐵(𝑂𝐴)𝐶)𝐸 → (𝐴𝑈 ∧ (𝐵𝑆𝐶𝑇) ∧ (𝐷 ∈ V ∧ 𝐸 ∈ V))))))
5127, 50sylbi 207 . . . 4 (¬ (𝐴𝑈 ∧ (𝑏𝑆, 𝑐𝑇 ↦ {⟨𝑑, 𝑒⟩ ∣ 𝜓}) ∈ V) → ((𝑆𝑋𝑇𝑌) → (⟨𝐵, 𝐶⟩ ∈ dom (𝑂𝐴) → (𝐷(𝐵(𝑂𝐴)𝐶)𝐸 → (𝐴𝑈 ∧ (𝐵𝑆𝐶𝑇) ∧ (𝐷 ∈ V ∧ 𝐸 ∈ V))))))
5251com34 91 . . 3 (¬ (𝐴𝑈 ∧ (𝑏𝑆, 𝑐𝑇 ↦ {⟨𝑑, 𝑒⟩ ∣ 𝜓}) ∈ V) → ((𝑆𝑋𝑇𝑌) → (𝐷(𝐵(𝑂𝐴)𝐶)𝐸 → (⟨𝐵, 𝐶⟩ ∈ dom (𝑂𝐴) → (𝐴𝑈 ∧ (𝐵𝑆𝐶𝑇) ∧ (𝐷 ∈ V ∧ 𝐸 ∈ V))))))
5326, 52pm2.61i 176 . 2 ((𝑆𝑋𝑇𝑌) → (𝐷(𝐵(𝑂𝐴)𝐶)𝐸 → (⟨𝐵, 𝐶⟩ ∈ dom (𝑂𝐴) → (𝐴𝑈 ∧ (𝐵𝑆𝐶𝑇) ∧ (𝐷 ∈ V ∧ 𝐸 ∈ V)))))
541, 53mpdi 45 1 ((𝑆𝑋𝑇𝑌) → (𝐷(𝐵(𝑂𝐴)𝐶)𝐸 → (𝐴𝑈 ∧ (𝐵𝑆𝐶𝑇) ∧ (𝐷 ∈ V ∧ 𝐸 ∈ V))))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 196   ∨ wo 382   ∧ wa 383   ∧ w3a 1072   = wceq 1632   ∈ wcel 2139  Vcvv 3340  ∅c0 4058  ⟨cop 4327   class class class wbr 4804  {copab 4864   ↦ cmpt 4881   × cxp 5264  dom cdm 5266  ‘cfv 6049  (class class class)co 6814  {coprab 6815   ↦ cmpt2 6816 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-ral 3055  df-rex 3056  df-reu 3057  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-op 4328  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-id 5174  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-ov 6817  df-oprab 6818  df-mpt2 6819  df-1st 7334  df-2nd 7335 This theorem is referenced by:  wlkonprop  26785  wksonproplem  26832
 Copyright terms: Public domain W3C validator