![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > brinxp2 | Structured version Visualization version GIF version |
Description: Intersection of binary relation with Cartesian product. (Contributed by NM, 3-Mar-2007.) (Revised by Mario Carneiro, 26-Apr-2015.) |
Ref | Expression |
---|---|
brinxp2 | ⊢ (𝐴(𝑅 ∩ (𝐶 × 𝐷))𝐵 ↔ (𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ∧ 𝐴𝑅𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brin 4844 | . 2 ⊢ (𝐴(𝑅 ∩ (𝐶 × 𝐷))𝐵 ↔ (𝐴𝑅𝐵 ∧ 𝐴(𝐶 × 𝐷)𝐵)) | |
2 | ancom 465 | . 2 ⊢ ((𝐴𝑅𝐵 ∧ 𝐴(𝐶 × 𝐷)𝐵) ↔ (𝐴(𝐶 × 𝐷)𝐵 ∧ 𝐴𝑅𝐵)) | |
3 | brxp 5292 | . . . 4 ⊢ (𝐴(𝐶 × 𝐷)𝐵 ↔ (𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷)) | |
4 | 3 | anbi1i 733 | . . 3 ⊢ ((𝐴(𝐶 × 𝐷)𝐵 ∧ 𝐴𝑅𝐵) ↔ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) ∧ 𝐴𝑅𝐵)) |
5 | df-3an 1074 | . . 3 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ∧ 𝐴𝑅𝐵) ↔ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) ∧ 𝐴𝑅𝐵)) | |
6 | 4, 5 | bitr4i 267 | . 2 ⊢ ((𝐴(𝐶 × 𝐷)𝐵 ∧ 𝐴𝑅𝐵) ↔ (𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ∧ 𝐴𝑅𝐵)) |
7 | 1, 2, 6 | 3bitri 286 | 1 ⊢ (𝐴(𝑅 ∩ (𝐶 × 𝐷))𝐵 ↔ (𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ∧ 𝐴𝑅𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 ∧ wa 383 ∧ w3a 1072 ∈ wcel 2127 ∩ cin 3702 class class class wbr 4792 × cxp 5252 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1859 ax-4 1874 ax-5 1976 ax-6 2042 ax-7 2078 ax-9 2136 ax-10 2156 ax-11 2171 ax-12 2184 ax-13 2379 ax-ext 2728 ax-sep 4921 ax-nul 4929 ax-pr 5043 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1623 df-ex 1842 df-nf 1847 df-sb 2035 df-clab 2735 df-cleq 2741 df-clel 2744 df-nfc 2879 df-ral 3043 df-rex 3044 df-rab 3047 df-v 3330 df-dif 3706 df-un 3708 df-in 3710 df-ss 3717 df-nul 4047 df-if 4219 df-sn 4310 df-pr 4312 df-op 4316 df-br 4793 df-opab 4853 df-xp 5260 |
This theorem is referenced by: brinxp 5326 fncnv 6111 erinxp 7976 fpwwe2lem8 9622 fpwwe2lem9 9623 fpwwe2lem12 9626 nqerf 9915 nqerid 9918 isstruct 16043 pwsle 16325 psss 17386 psssdm2 17387 pi1cpbl 23015 pi1grplem 23020 |
Copyright terms: Public domain | W3C validator |