![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > brintclab | Structured version Visualization version GIF version |
Description: Two ways to express a binary relation which is the intersection of a class. (Contributed by RP, 4-Apr-2020.) |
Ref | Expression |
---|---|
brintclab | ⊢ (𝐴∩ {𝑥 ∣ 𝜑}𝐵 ↔ ∀𝑥(𝜑 → 〈𝐴, 𝐵〉 ∈ 𝑥)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-br 4686 | . 2 ⊢ (𝐴∩ {𝑥 ∣ 𝜑}𝐵 ↔ 〈𝐴, 𝐵〉 ∈ ∩ {𝑥 ∣ 𝜑}) | |
2 | opex 4962 | . . 3 ⊢ 〈𝐴, 𝐵〉 ∈ V | |
3 | 2 | elintab 4519 | . 2 ⊢ (〈𝐴, 𝐵〉 ∈ ∩ {𝑥 ∣ 𝜑} ↔ ∀𝑥(𝜑 → 〈𝐴, 𝐵〉 ∈ 𝑥)) |
4 | 1, 3 | bitri 264 | 1 ⊢ (𝐴∩ {𝑥 ∣ 𝜑}𝐵 ↔ ∀𝑥(𝜑 → 〈𝐴, 𝐵〉 ∈ 𝑥)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∀wal 1521 ∈ wcel 2030 {cab 2637 〈cop 4216 ∩ cint 4507 class class class wbr 4685 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pr 4936 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-v 3233 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-sn 4211 df-pr 4213 df-op 4217 df-int 4508 df-br 4686 |
This theorem is referenced by: brtrclfv 13787 |
Copyright terms: Public domain | W3C validator |