![]() |
Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > brimage | Structured version Visualization version GIF version |
Description: Binary relation form of the Image functor. (Contributed by Scott Fenton, 4-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
Ref | Expression |
---|---|
brimage.1 | ⊢ 𝐴 ∈ V |
brimage.2 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
brimage | ⊢ (𝐴Image𝑅𝐵 ↔ 𝐵 = (𝑅 “ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brimage.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | brimage.2 | . 2 ⊢ 𝐵 ∈ V | |
3 | df-image 32269 | . 2 ⊢ Image𝑅 = ((V × V) ∖ ran ((V ⊗ E ) △ (( E ∘ ◡𝑅) ⊗ V))) | |
4 | brxp 5296 | . . 3 ⊢ (𝐴(V × V)𝐵 ↔ (𝐴 ∈ V ∧ 𝐵 ∈ V)) | |
5 | 1, 2, 4 | mpbir2an 993 | . 2 ⊢ 𝐴(V × V)𝐵 |
6 | vex 3335 | . . . . 5 ⊢ 𝑥 ∈ V | |
7 | vex 3335 | . . . . 5 ⊢ 𝑦 ∈ V | |
8 | 6, 7 | brcnv 5452 | . . . 4 ⊢ (𝑥◡𝑅𝑦 ↔ 𝑦𝑅𝑥) |
9 | 8 | rexbii 3171 | . . 3 ⊢ (∃𝑦 ∈ 𝐴 𝑥◡𝑅𝑦 ↔ ∃𝑦 ∈ 𝐴 𝑦𝑅𝑥) |
10 | 6, 1 | coep 31940 | . . 3 ⊢ (𝑥( E ∘ ◡𝑅)𝐴 ↔ ∃𝑦 ∈ 𝐴 𝑥◡𝑅𝑦) |
11 | 6 | elima 5621 | . . 3 ⊢ (𝑥 ∈ (𝑅 “ 𝐴) ↔ ∃𝑦 ∈ 𝐴 𝑦𝑅𝑥) |
12 | 9, 10, 11 | 3bitr4ri 293 | . 2 ⊢ (𝑥 ∈ (𝑅 “ 𝐴) ↔ 𝑥( E ∘ ◡𝑅)𝐴) |
13 | 1, 2, 3, 5, 12 | brtxpsd3 32301 | 1 ⊢ (𝐴Image𝑅𝐵 ↔ 𝐵 = (𝑅 “ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 = wceq 1624 ∈ wcel 2131 ∃wrex 3043 Vcvv 3332 class class class wbr 4796 E cep 5170 × cxp 5256 ◡ccnv 5257 “ cima 5261 ∘ ccom 5262 Imagecimage 32245 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1863 ax-4 1878 ax-5 1980 ax-6 2046 ax-7 2082 ax-8 2133 ax-9 2140 ax-10 2160 ax-11 2175 ax-12 2188 ax-13 2383 ax-ext 2732 ax-sep 4925 ax-nul 4933 ax-pow 4984 ax-pr 5047 ax-un 7106 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1627 df-ex 1846 df-nf 1851 df-sb 2039 df-eu 2603 df-mo 2604 df-clab 2739 df-cleq 2745 df-clel 2748 df-nfc 2883 df-ne 2925 df-ral 3047 df-rex 3048 df-rab 3051 df-v 3334 df-sbc 3569 df-dif 3710 df-un 3712 df-in 3714 df-ss 3721 df-symdif 3979 df-nul 4051 df-if 4223 df-sn 4314 df-pr 4316 df-op 4320 df-uni 4581 df-br 4797 df-opab 4857 df-mpt 4874 df-id 5166 df-eprel 5171 df-xp 5264 df-rel 5265 df-cnv 5266 df-co 5267 df-dm 5268 df-rn 5269 df-res 5270 df-ima 5271 df-iota 6004 df-fun 6043 df-fn 6044 df-f 6045 df-fo 6047 df-fv 6049 df-1st 7325 df-2nd 7326 df-txp 32259 df-image 32269 |
This theorem is referenced by: brimageg 32332 funimage 32333 fnimage 32334 imageval 32335 brdomain 32338 brrange 32339 brimg 32342 funpartlem 32347 imagesset 32358 |
Copyright terms: Public domain | W3C validator |