Mathbox for Richard Penner < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brfvrcld2 Structured version   Visualization version   GIF version

Theorem brfvrcld2 38510
 Description: If two elements are connected by the reflexive closure of a relation, then they are equal or related by relation. (Contributed by RP, 21-Jul-2020.)
Hypothesis
Ref Expression
brfvrcld2.r (𝜑𝑅 ∈ V)
Assertion
Ref Expression
brfvrcld2 (𝜑 → (𝐴(r*‘𝑅)𝐵 ↔ ((𝐴 ∈ (dom 𝑅 ∪ ran 𝑅) ∧ 𝐵 ∈ (dom 𝑅 ∪ ran 𝑅) ∧ 𝐴 = 𝐵) ∨ 𝐴𝑅𝐵)))

Proof of Theorem brfvrcld2
StepHypRef Expression
1 brfvrcld2.r . . 3 (𝜑𝑅 ∈ V)
21brfvrcld 38509 . 2 (𝜑 → (𝐴(r*‘𝑅)𝐵 ↔ (𝐴(𝑅𝑟0)𝐵𝐴(𝑅𝑟1)𝐵)))
3 relexp0g 13970 . . . . . 6 (𝑅 ∈ V → (𝑅𝑟0) = ( I ↾ (dom 𝑅 ∪ ran 𝑅)))
41, 3syl 17 . . . . 5 (𝜑 → (𝑅𝑟0) = ( I ↾ (dom 𝑅 ∪ ran 𝑅)))
54breqd 4798 . . . 4 (𝜑 → (𝐴(𝑅𝑟0)𝐵𝐴( I ↾ (dom 𝑅 ∪ ran 𝑅))𝐵))
6 relres 5566 . . . . . . . 8 Rel ( I ↾ (dom 𝑅 ∪ ran 𝑅))
76releldmi 5499 . . . . . . 7 (𝐴( I ↾ (dom 𝑅 ∪ ran 𝑅))𝐵𝐴 ∈ dom ( I ↾ (dom 𝑅 ∪ ran 𝑅)))
86relelrni 5500 . . . . . . 7 (𝐴( I ↾ (dom 𝑅 ∪ ran 𝑅))𝐵𝐵 ∈ ran ( I ↾ (dom 𝑅 ∪ ran 𝑅)))
9 dmresi 5597 . . . . . . . . . 10 dom ( I ↾ (dom 𝑅 ∪ ran 𝑅)) = (dom 𝑅 ∪ ran 𝑅)
109eleq2i 2842 . . . . . . . . 9 (𝐴 ∈ dom ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ↔ 𝐴 ∈ (dom 𝑅 ∪ ran 𝑅))
1110biimpi 206 . . . . . . . 8 (𝐴 ∈ dom ( I ↾ (dom 𝑅 ∪ ran 𝑅)) → 𝐴 ∈ (dom 𝑅 ∪ ran 𝑅))
12 rnresi 5619 . . . . . . . . . 10 ran ( I ↾ (dom 𝑅 ∪ ran 𝑅)) = (dom 𝑅 ∪ ran 𝑅)
1312eleq2i 2842 . . . . . . . . 9 (𝐵 ∈ ran ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ↔ 𝐵 ∈ (dom 𝑅 ∪ ran 𝑅))
1413biimpi 206 . . . . . . . 8 (𝐵 ∈ ran ( I ↾ (dom 𝑅 ∪ ran 𝑅)) → 𝐵 ∈ (dom 𝑅 ∪ ran 𝑅))
1511, 14anim12i 600 . . . . . . 7 ((𝐴 ∈ dom ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ∧ 𝐵 ∈ ran ( I ↾ (dom 𝑅 ∪ ran 𝑅))) → (𝐴 ∈ (dom 𝑅 ∪ ran 𝑅) ∧ 𝐵 ∈ (dom 𝑅 ∪ ran 𝑅)))
167, 8, 15syl2anc 573 . . . . . 6 (𝐴( I ↾ (dom 𝑅 ∪ ran 𝑅))𝐵 → (𝐴 ∈ (dom 𝑅 ∪ ran 𝑅) ∧ 𝐵 ∈ (dom 𝑅 ∪ ran 𝑅)))
17 resieq 5547 . . . . . 6 ((𝐴 ∈ (dom 𝑅 ∪ ran 𝑅) ∧ 𝐵 ∈ (dom 𝑅 ∪ ran 𝑅)) → (𝐴( I ↾ (dom 𝑅 ∪ ran 𝑅))𝐵𝐴 = 𝐵))
1816, 17biadan2 820 . . . . 5 (𝐴( I ↾ (dom 𝑅 ∪ ran 𝑅))𝐵 ↔ ((𝐴 ∈ (dom 𝑅 ∪ ran 𝑅) ∧ 𝐵 ∈ (dom 𝑅 ∪ ran 𝑅)) ∧ 𝐴 = 𝐵))
19 df-3an 1073 . . . . 5 ((𝐴 ∈ (dom 𝑅 ∪ ran 𝑅) ∧ 𝐵 ∈ (dom 𝑅 ∪ ran 𝑅) ∧ 𝐴 = 𝐵) ↔ ((𝐴 ∈ (dom 𝑅 ∪ ran 𝑅) ∧ 𝐵 ∈ (dom 𝑅 ∪ ran 𝑅)) ∧ 𝐴 = 𝐵))
2018, 19bitr4i 267 . . . 4 (𝐴( I ↾ (dom 𝑅 ∪ ran 𝑅))𝐵 ↔ (𝐴 ∈ (dom 𝑅 ∪ ran 𝑅) ∧ 𝐵 ∈ (dom 𝑅 ∪ ran 𝑅) ∧ 𝐴 = 𝐵))
215, 20syl6bb 276 . . 3 (𝜑 → (𝐴(𝑅𝑟0)𝐵 ↔ (𝐴 ∈ (dom 𝑅 ∪ ran 𝑅) ∧ 𝐵 ∈ (dom 𝑅 ∪ ran 𝑅) ∧ 𝐴 = 𝐵)))
221relexp1d 13979 . . . 4 (𝜑 → (𝑅𝑟1) = 𝑅)
2322breqd 4798 . . 3 (𝜑 → (𝐴(𝑅𝑟1)𝐵𝐴𝑅𝐵))
2421, 23orbi12d 904 . 2 (𝜑 → ((𝐴(𝑅𝑟0)𝐵𝐴(𝑅𝑟1)𝐵) ↔ ((𝐴 ∈ (dom 𝑅 ∪ ran 𝑅) ∧ 𝐵 ∈ (dom 𝑅 ∪ ran 𝑅) ∧ 𝐴 = 𝐵) ∨ 𝐴𝑅𝐵)))
252, 24bitrd 268 1 (𝜑 → (𝐴(r*‘𝑅)𝐵 ↔ ((𝐴 ∈ (dom 𝑅 ∪ ran 𝑅) ∧ 𝐵 ∈ (dom 𝑅 ∪ ran 𝑅) ∧ 𝐴 = 𝐵) ∨ 𝐴𝑅𝐵)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 382   ∨ wo 836   ∧ w3a 1071   = wceq 1631   ∈ wcel 2145  Vcvv 3351   ∪ cun 3721   class class class wbr 4787   I cid 5157  dom cdm 5250  ran crn 5251   ↾ cres 5252  ‘cfv 6030  (class class class)co 6796  0cc0 10142  1c1 10143  ↑𝑟crelexp 13968  r*crcl 38490 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4905  ax-sep 4916  ax-nul 4924  ax-pow 4975  ax-pr 5035  ax-un 7100  ax-cnex 10198  ax-resscn 10199  ax-1cn 10200  ax-icn 10201  ax-addcl 10202  ax-addrcl 10203  ax-mulcl 10204  ax-mulrcl 10205  ax-mulcom 10206  ax-addass 10207  ax-mulass 10208  ax-distr 10209  ax-i2m1 10210  ax-1ne0 10211  ax-1rid 10212  ax-rnegex 10213  ax-rrecex 10214  ax-cnre 10215  ax-pre-lttri 10216  ax-pre-lttrn 10217  ax-pre-ltadd 10218  ax-pre-mulgt0 10219 This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-tp 4322  df-op 4324  df-uni 4576  df-int 4613  df-iun 4657  df-br 4788  df-opab 4848  df-mpt 4865  df-tr 4888  df-id 5158  df-eprel 5163  df-po 5171  df-so 5172  df-fr 5209  df-we 5211  df-xp 5256  df-rel 5257  df-cnv 5258  df-co 5259  df-dm 5260  df-rn 5261  df-res 5262  df-ima 5263  df-pred 5822  df-ord 5868  df-on 5869  df-lim 5870  df-suc 5871  df-iota 5993  df-fun 6032  df-fn 6033  df-f 6034  df-f1 6035  df-fo 6036  df-f1o 6037  df-fv 6038  df-riota 6757  df-ov 6799  df-oprab 6800  df-mpt2 6801  df-om 7217  df-2nd 7320  df-wrecs 7563  df-recs 7625  df-rdg 7663  df-er 7900  df-en 8114  df-dom 8115  df-sdom 8116  df-pnf 10282  df-mnf 10283  df-xr 10284  df-ltxr 10285  df-le 10286  df-sub 10474  df-neg 10475  df-nn 11227  df-n0 11500  df-z 11585  df-uz 11894  df-seq 13009  df-relexp 13969  df-rcl 38491 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator