Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brfvrcld Structured version   Visualization version   GIF version

Theorem brfvrcld 38485
Description: If two elements are connected by the reflexive closure of a relation, then they are connected via zero or one instances the relation. (Contributed by RP, 21-Jul-2020.)
Hypothesis
Ref Expression
brfvrcld.r (𝜑𝑅 ∈ V)
Assertion
Ref Expression
brfvrcld (𝜑 → (𝐴(r*‘𝑅)𝐵 ↔ (𝐴(𝑅𝑟0)𝐵𝐴(𝑅𝑟1)𝐵)))

Proof of Theorem brfvrcld
Dummy variables 𝑛 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfrcl4 38470 . . 3 r* = (𝑟 ∈ V ↦ 𝑛 ∈ {0, 1} (𝑟𝑟𝑛))
2 brfvrcld.r . . 3 (𝜑𝑅 ∈ V)
3 0nn0 11499 . . . . 5 0 ∈ ℕ0
4 1nn0 11500 . . . . 5 1 ∈ ℕ0
5 prssi 4498 . . . . 5 ((0 ∈ ℕ0 ∧ 1 ∈ ℕ0) → {0, 1} ⊆ ℕ0)
63, 4, 5mp2an 710 . . . 4 {0, 1} ⊆ ℕ0
76a1i 11 . . 3 (𝜑 → {0, 1} ⊆ ℕ0)
81, 2, 7brmptiunrelexpd 38477 . 2 (𝜑 → (𝐴(r*‘𝑅)𝐵 ↔ ∃𝑛 ∈ {0, 1}𝐴(𝑅𝑟𝑛)𝐵))
9 oveq2 6821 . . . . 5 (𝑛 = 0 → (𝑅𝑟𝑛) = (𝑅𝑟0))
109breqd 4815 . . . 4 (𝑛 = 0 → (𝐴(𝑅𝑟𝑛)𝐵𝐴(𝑅𝑟0)𝐵))
11 oveq2 6821 . . . . 5 (𝑛 = 1 → (𝑅𝑟𝑛) = (𝑅𝑟1))
1211breqd 4815 . . . 4 (𝑛 = 1 → (𝐴(𝑅𝑟𝑛)𝐵𝐴(𝑅𝑟1)𝐵))
1310, 12rexprg 4379 . . 3 ((0 ∈ ℕ0 ∧ 1 ∈ ℕ0) → (∃𝑛 ∈ {0, 1}𝐴(𝑅𝑟𝑛)𝐵 ↔ (𝐴(𝑅𝑟0)𝐵𝐴(𝑅𝑟1)𝐵)))
143, 4, 13mp2an 710 . 2 (∃𝑛 ∈ {0, 1}𝐴(𝑅𝑟𝑛)𝐵 ↔ (𝐴(𝑅𝑟0)𝐵𝐴(𝑅𝑟1)𝐵))
158, 14syl6bb 276 1 (𝜑 → (𝐴(r*‘𝑅)𝐵 ↔ (𝐴(𝑅𝑟0)𝐵𝐴(𝑅𝑟1)𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wo 382   = wceq 1632  wcel 2139  wrex 3051  Vcvv 3340  wss 3715  {cpr 4323   class class class wbr 4804  cfv 6049  (class class class)co 6813  0cc0 10128  1c1 10129  0cn0 11484  𝑟crelexp 13959  r*crcl 38466
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-cnex 10184  ax-resscn 10185  ax-1cn 10186  ax-icn 10187  ax-addcl 10188  ax-addrcl 10189  ax-mulcl 10190  ax-mulrcl 10191  ax-mulcom 10192  ax-addass 10193  ax-mulass 10194  ax-distr 10195  ax-i2m1 10196  ax-1ne0 10197  ax-1rid 10198  ax-rnegex 10199  ax-rrecex 10200  ax-cnre 10201  ax-pre-lttri 10202  ax-pre-lttrn 10203  ax-pre-ltadd 10204  ax-pre-mulgt0 10205
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-om 7231  df-2nd 7334  df-wrecs 7576  df-recs 7637  df-rdg 7675  df-er 7911  df-en 8122  df-dom 8123  df-sdom 8124  df-pnf 10268  df-mnf 10269  df-xr 10270  df-ltxr 10271  df-le 10272  df-sub 10460  df-neg 10461  df-nn 11213  df-n0 11485  df-z 11570  df-uz 11880  df-seq 12996  df-relexp 13960  df-rcl 38467
This theorem is referenced by:  brfvrcld2  38486
  Copyright terms: Public domain W3C validator