![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > breqan12d | Structured version Visualization version GIF version |
Description: Equality deduction for a binary relation. (Contributed by NM, 8-Feb-1996.) |
Ref | Expression |
---|---|
breq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
breqan12i.2 | ⊢ (𝜓 → 𝐶 = 𝐷) |
Ref | Expression |
---|---|
breqan12d | ⊢ ((𝜑 ∧ 𝜓) → (𝐴𝑅𝐶 ↔ 𝐵𝑅𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | breqan12i.2 | . 2 ⊢ (𝜓 → 𝐶 = 𝐷) | |
3 | breq12 4690 | . 2 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴𝑅𝐶 ↔ 𝐵𝑅𝐷)) | |
4 | 1, 2, 3 | syl2an 493 | 1 ⊢ ((𝜑 ∧ 𝜓) → (𝐴𝑅𝐶 ↔ 𝐵𝑅𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 = wceq 1523 class class class wbr 4685 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-rab 2950 df-v 3233 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-sn 4211 df-pr 4213 df-op 4217 df-br 4686 |
This theorem is referenced by: breqan12rd 4702 soisores 6617 isoid 6619 isores3 6625 isoini2 6629 ofrfval 6947 fnwelem 7337 fnse 7339 wemaplem1 8492 r0weon 8873 sornom 9137 enqbreq2 9780 nqereu 9789 ordpinq 9803 lterpq 9830 ltresr2 10000 axpre-ltadd 10026 leltadd 10550 lemul1a 10915 negiso 11041 xltneg 12086 lt2sq 12977 le2sq 12978 sqrtle 14045 prdsleval 16184 efgcpbllema 18213 iducn 22134 icopnfhmeo 22789 iccpnfhmeo 22791 xrhmeo 22792 reefiso 24247 sinord 24325 logltb 24391 logccv 24454 atanord 24699 birthdaylem3 24725 lgsquadlem3 25152 mddmd 29288 xrge0iifiso 30109 erdszelem4 31302 erdszelem8 31306 cgrextend 32240 matunitlindf 33537 idlaut 35700 monotuz 37823 monotoddzzfi 37824 expmordi 37829 wepwsolem 37929 fnwe2val 37936 aomclem8 37948 |
Copyright terms: Public domain | W3C validator |