![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > breq123d | Structured version Visualization version GIF version |
Description: Equality deduction for a binary relation. (Contributed by NM, 29-Oct-2011.) |
Ref | Expression |
---|---|
breq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
breq123d.2 | ⊢ (𝜑 → 𝑅 = 𝑆) |
breq123d.3 | ⊢ (𝜑 → 𝐶 = 𝐷) |
Ref | Expression |
---|---|
breq123d | ⊢ (𝜑 → (𝐴𝑅𝐶 ↔ 𝐵𝑆𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq1d.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | breq123d.3 | . . 3 ⊢ (𝜑 → 𝐶 = 𝐷) | |
3 | 1, 2 | breq12d 4817 | . 2 ⊢ (𝜑 → (𝐴𝑅𝐶 ↔ 𝐵𝑅𝐷)) |
4 | breq123d.2 | . . 3 ⊢ (𝜑 → 𝑅 = 𝑆) | |
5 | 4 | breqd 4815 | . 2 ⊢ (𝜑 → (𝐵𝑅𝐷 ↔ 𝐵𝑆𝐷)) |
6 | 3, 5 | bitrd 268 | 1 ⊢ (𝜑 → (𝐴𝑅𝐶 ↔ 𝐵𝑆𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 = wceq 1632 class class class wbr 4804 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-rab 3059 df-v 3342 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-sn 4322 df-pr 4324 df-op 4328 df-br 4805 |
This theorem is referenced by: sbcbr123 4858 fmptco 6559 xpsle 16443 invfuc 16835 yonedainv 17122 opphllem3 25840 lmif 25876 islmib 25878 iscgra 25900 isinag 25928 fmptcof2 29766 submomnd 30019 sgnsv 30036 inftmrel 30043 isinftm 30044 submarchi 30049 suborng 30124 uncov 33703 iscvlat 35113 paddfval 35586 lhpset 35784 tendofset 36548 diaffval 36821 fnwe2val 38121 aomclem8 38133 |
Copyright terms: Public domain | W3C validator |