MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  breldmg Structured version   Visualization version   GIF version

Theorem breldmg 5362
Description: Membership of first of a binary relation in a domain. (Contributed by NM, 21-Mar-2007.)
Assertion
Ref Expression
breldmg ((𝐴𝐶𝐵𝐷𝐴𝑅𝐵) → 𝐴 ∈ dom 𝑅)

Proof of Theorem breldmg
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 breq2 4689 . . . . 5 (𝑥 = 𝐵 → (𝐴𝑅𝑥𝐴𝑅𝐵))
21spcegv 3325 . . . 4 (𝐵𝐷 → (𝐴𝑅𝐵 → ∃𝑥 𝐴𝑅𝑥))
32imp 444 . . 3 ((𝐵𝐷𝐴𝑅𝐵) → ∃𝑥 𝐴𝑅𝑥)
4 eldmg 5351 . . 3 (𝐴𝐶 → (𝐴 ∈ dom 𝑅 ↔ ∃𝑥 𝐴𝑅𝑥))
53, 4syl5ibr 236 . 2 (𝐴𝐶 → ((𝐵𝐷𝐴𝑅𝐵) → 𝐴 ∈ dom 𝑅))
653impib 1281 1 ((𝐴𝐶𝐵𝐷𝐴𝑅𝐵) → 𝐴 ∈ dom 𝑅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1054  wex 1744  wcel 2030   class class class wbr 4685  dom cdm 5143
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-rab 2950  df-v 3233  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-sn 4211  df-pr 4213  df-op 4217  df-br 4686  df-dm 5153
This theorem is referenced by:  brelrng  5387  releldm  5390  sossfld  5615  brtpos  7406  wfrlem17  7476  tfrlem9a  7527  perpln1  25650  lmdvg  30127  esumcvgsum  30278  fvelimad  39772  climeldmeq  40215  climfv  40241  climxlim2  40390  sge0isum  40962  smflimsuplem6  41352  tz6.12-afv  41574  rlimdmafv  41578
  Copyright terms: Public domain W3C validator