![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > breldm | Structured version Visualization version GIF version |
Description: Membership of first of a binary relation in a domain. (Contributed by NM, 30-Jul-1995.) |
Ref | Expression |
---|---|
opeldm.1 | ⊢ 𝐴 ∈ V |
opeldm.2 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
breldm | ⊢ (𝐴𝑅𝐵 → 𝐴 ∈ dom 𝑅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-br 4686 | . 2 ⊢ (𝐴𝑅𝐵 ↔ 〈𝐴, 𝐵〉 ∈ 𝑅) | |
2 | opeldm.1 | . . 3 ⊢ 𝐴 ∈ V | |
3 | opeldm.2 | . . 3 ⊢ 𝐵 ∈ V | |
4 | 2, 3 | opeldm 5360 | . 2 ⊢ (〈𝐴, 𝐵〉 ∈ 𝑅 → 𝐴 ∈ dom 𝑅) |
5 | 1, 4 | sylbi 207 | 1 ⊢ (𝐴𝑅𝐵 → 𝐴 ∈ dom 𝑅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2030 Vcvv 3231 〈cop 4216 class class class wbr 4685 dom cdm 5143 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-rab 2950 df-v 3233 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-sn 4211 df-pr 4213 df-op 4217 df-br 4686 df-dm 5153 |
This theorem is referenced by: funcnv3 5997 opabiota 6300 dffv2 6310 dff13 6552 exse2 7147 reldmtpos 7405 rntpos 7410 dftpos4 7416 tpostpos 7417 wfrlem5 7464 iserd 7813 dcomex 9307 axdc2lem 9308 axdclem2 9380 dmrecnq 9828 cotr2g 13761 shftfval 13854 geolim2 14646 geomulcvg 14651 geoisum1c 14655 cvgrat 14659 ntrivcvg 14673 eftlub 14883 eflegeo 14895 rpnnen2lem5 14991 imasleval 16248 psdmrn 17254 psssdm2 17262 ovoliunnul 23321 vitalilem5 23426 dvcj 23758 dvrec 23763 dvef 23788 ftc1cn 23851 aaliou3lem3 24144 ulmdv 24202 dvradcnv 24220 abelthlem7 24237 abelthlem9 24239 logtayllem 24450 leibpi 24714 log2tlbnd 24717 zetacvg 24786 hhcms 28188 hhsscms 28264 occl 28291 gsummpt2co 29908 iprodgam 31754 imaindm 31806 frrlem5 31909 imageval 32162 knoppcnlem6 32613 knoppndvlem6 32633 knoppf 32651 unccur 33522 ftc1cnnc 33614 geomcau 33685 dvradcnv2 38863 |
Copyright terms: Public domain | W3C validator |