MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  brdom3 Structured version   Visualization version   GIF version

Theorem brdom3 9551
Description: Equivalence to a dominance relation. (Contributed by NM, 27-Mar-2007.)
Hypothesis
Ref Expression
brdom3.2 𝐵 ∈ V
Assertion
Ref Expression
brdom3 (𝐴𝐵 ↔ ∃𝑓(∀𝑥∃*𝑦 𝑥𝑓𝑦 ∧ ∀𝑥𝐴𝑦𝐵 𝑦𝑓𝑥))
Distinct variable groups:   𝑥,𝑓,𝑦,𝐴   𝐵,𝑓,𝑥,𝑦

Proof of Theorem brdom3
StepHypRef Expression
1 reldom 8114 . . . . . . . . 9 Rel ≼
21brrelexi 5298 . . . . . . . 8 (𝐴𝐵𝐴 ∈ V)
3 0sdomg 8244 . . . . . . . 8 (𝐴 ∈ V → (∅ ≺ 𝐴𝐴 ≠ ∅))
42, 3syl 17 . . . . . . 7 (𝐴𝐵 → (∅ ≺ 𝐴𝐴 ≠ ∅))
5 df-ne 2943 . . . . . . 7 (𝐴 ≠ ∅ ↔ ¬ 𝐴 = ∅)
64, 5syl6bb 276 . . . . . 6 (𝐴𝐵 → (∅ ≺ 𝐴 ↔ ¬ 𝐴 = ∅))
76biimpar 463 . . . . 5 ((𝐴𝐵 ∧ ¬ 𝐴 = ∅) → ∅ ≺ 𝐴)
8 fodomr 8266 . . . . . 6 ((∅ ≺ 𝐴𝐴𝐵) → ∃𝑓 𝑓:𝐵onto𝐴)
98ancoms 455 . . . . 5 ((𝐴𝐵 ∧ ∅ ≺ 𝐴) → ∃𝑓 𝑓:𝐵onto𝐴)
107, 9syldan 571 . . . 4 ((𝐴𝐵 ∧ ¬ 𝐴 = ∅) → ∃𝑓 𝑓:𝐵onto𝐴)
11 pm5.6 992 . . . 4 (((𝐴𝐵 ∧ ¬ 𝐴 = ∅) → ∃𝑓 𝑓:𝐵onto𝐴) ↔ (𝐴𝐵 → (𝐴 = ∅ ∨ ∃𝑓 𝑓:𝐵onto𝐴)))
1210, 11mpbi 220 . . 3 (𝐴𝐵 → (𝐴 = ∅ ∨ ∃𝑓 𝑓:𝐵onto𝐴))
13 br0 4833 . . . . . . . 8 ¬ 𝑥𝑦
1413nex 1878 . . . . . . 7 ¬ ∃𝑦 𝑥𝑦
15 exmo 2642 . . . . . . 7 (∃𝑦 𝑥𝑦 ∨ ∃*𝑦 𝑥𝑦)
1614, 15mtpor 1842 . . . . . 6 ∃*𝑦 𝑥𝑦
1716ax-gen 1869 . . . . 5 𝑥∃*𝑦 𝑥𝑦
18 rzal 4212 . . . . 5 (𝐴 = ∅ → ∀𝑥𝐴𝑦𝐵 𝑦𝑥)
19 0ex 4921 . . . . . 6 ∅ ∈ V
20 breq 4786 . . . . . . . . 9 (𝑓 = ∅ → (𝑥𝑓𝑦𝑥𝑦))
2120mobidv 2638 . . . . . . . 8 (𝑓 = ∅ → (∃*𝑦 𝑥𝑓𝑦 ↔ ∃*𝑦 𝑥𝑦))
2221albidv 2000 . . . . . . 7 (𝑓 = ∅ → (∀𝑥∃*𝑦 𝑥𝑓𝑦 ↔ ∀𝑥∃*𝑦 𝑥𝑦))
23 breq 4786 . . . . . . . . 9 (𝑓 = ∅ → (𝑦𝑓𝑥𝑦𝑥))
2423rexbidv 3199 . . . . . . . 8 (𝑓 = ∅ → (∃𝑦𝐵 𝑦𝑓𝑥 ↔ ∃𝑦𝐵 𝑦𝑥))
2524ralbidv 3134 . . . . . . 7 (𝑓 = ∅ → (∀𝑥𝐴𝑦𝐵 𝑦𝑓𝑥 ↔ ∀𝑥𝐴𝑦𝐵 𝑦𝑥))
2622, 25anbi12d 608 . . . . . 6 (𝑓 = ∅ → ((∀𝑥∃*𝑦 𝑥𝑓𝑦 ∧ ∀𝑥𝐴𝑦𝐵 𝑦𝑓𝑥) ↔ (∀𝑥∃*𝑦 𝑥𝑦 ∧ ∀𝑥𝐴𝑦𝐵 𝑦𝑥)))
2719, 26spcev 3449 . . . . 5 ((∀𝑥∃*𝑦 𝑥𝑦 ∧ ∀𝑥𝐴𝑦𝐵 𝑦𝑥) → ∃𝑓(∀𝑥∃*𝑦 𝑥𝑓𝑦 ∧ ∀𝑥𝐴𝑦𝐵 𝑦𝑓𝑥))
2817, 18, 27sylancr 567 . . . 4 (𝐴 = ∅ → ∃𝑓(∀𝑥∃*𝑦 𝑥𝑓𝑦 ∧ ∀𝑥𝐴𝑦𝐵 𝑦𝑓𝑥))
29 fofun 6257 . . . . . . 7 (𝑓:𝐵onto𝐴 → Fun 𝑓)
30 dffun6 6046 . . . . . . . 8 (Fun 𝑓 ↔ (Rel 𝑓 ∧ ∀𝑥∃*𝑦 𝑥𝑓𝑦))
3130simprbi 478 . . . . . . 7 (Fun 𝑓 → ∀𝑥∃*𝑦 𝑥𝑓𝑦)
3229, 31syl 17 . . . . . 6 (𝑓:𝐵onto𝐴 → ∀𝑥∃*𝑦 𝑥𝑓𝑦)
33 dffo4 6518 . . . . . . 7 (𝑓:𝐵onto𝐴 ↔ (𝑓:𝐵𝐴 ∧ ∀𝑥𝐴𝑦𝐵 𝑦𝑓𝑥))
3433simprbi 478 . . . . . 6 (𝑓:𝐵onto𝐴 → ∀𝑥𝐴𝑦𝐵 𝑦𝑓𝑥)
3532, 34jca 495 . . . . 5 (𝑓:𝐵onto𝐴 → (∀𝑥∃*𝑦 𝑥𝑓𝑦 ∧ ∀𝑥𝐴𝑦𝐵 𝑦𝑓𝑥))
3635eximi 1909 . . . 4 (∃𝑓 𝑓:𝐵onto𝐴 → ∃𝑓(∀𝑥∃*𝑦 𝑥𝑓𝑦 ∧ ∀𝑥𝐴𝑦𝐵 𝑦𝑓𝑥))
3728, 36jaoi 837 . . 3 ((𝐴 = ∅ ∨ ∃𝑓 𝑓:𝐵onto𝐴) → ∃𝑓(∀𝑥∃*𝑦 𝑥𝑓𝑦 ∧ ∀𝑥𝐴𝑦𝐵 𝑦𝑓𝑥))
3812, 37syl 17 . 2 (𝐴𝐵 → ∃𝑓(∀𝑥∃*𝑦 𝑥𝑓𝑦 ∧ ∀𝑥𝐴𝑦𝐵 𝑦𝑓𝑥))
39 inss1 3979 . . . . . . . . . . 11 (𝑓 ∩ (𝐵 × 𝐴)) ⊆ 𝑓
4039ssbri 4829 . . . . . . . . . 10 (𝑥(𝑓 ∩ (𝐵 × 𝐴))𝑦𝑥𝑓𝑦)
4140moimi 2668 . . . . . . . . 9 (∃*𝑦 𝑥𝑓𝑦 → ∃*𝑦 𝑥(𝑓 ∩ (𝐵 × 𝐴))𝑦)
4241alimi 1886 . . . . . . . 8 (∀𝑥∃*𝑦 𝑥𝑓𝑦 → ∀𝑥∃*𝑦 𝑥(𝑓 ∩ (𝐵 × 𝐴))𝑦)
43 relxp 5266 . . . . . . . . . 10 Rel (𝐵 × 𝐴)
44 relin2 5376 . . . . . . . . . 10 (Rel (𝐵 × 𝐴) → Rel (𝑓 ∩ (𝐵 × 𝐴)))
4543, 44ax-mp 5 . . . . . . . . 9 Rel (𝑓 ∩ (𝐵 × 𝐴))
46 dffun6 6046 . . . . . . . . 9 (Fun (𝑓 ∩ (𝐵 × 𝐴)) ↔ (Rel (𝑓 ∩ (𝐵 × 𝐴)) ∧ ∀𝑥∃*𝑦 𝑥(𝑓 ∩ (𝐵 × 𝐴))𝑦))
4745, 46mpbiran 680 . . . . . . . 8 (Fun (𝑓 ∩ (𝐵 × 𝐴)) ↔ ∀𝑥∃*𝑦 𝑥(𝑓 ∩ (𝐵 × 𝐴))𝑦)
4842, 47sylibr 224 . . . . . . 7 (∀𝑥∃*𝑦 𝑥𝑓𝑦 → Fun (𝑓 ∩ (𝐵 × 𝐴)))
49 funfn 6061 . . . . . . 7 (Fun (𝑓 ∩ (𝐵 × 𝐴)) ↔ (𝑓 ∩ (𝐵 × 𝐴)) Fn dom (𝑓 ∩ (𝐵 × 𝐴)))
5048, 49sylib 208 . . . . . 6 (∀𝑥∃*𝑦 𝑥𝑓𝑦 → (𝑓 ∩ (𝐵 × 𝐴)) Fn dom (𝑓 ∩ (𝐵 × 𝐴)))
51 rninxp 5714 . . . . . . 7 (ran (𝑓 ∩ (𝐵 × 𝐴)) = 𝐴 ↔ ∀𝑥𝐴𝑦𝐵 𝑦𝑓𝑥)
5251biimpri 218 . . . . . 6 (∀𝑥𝐴𝑦𝐵 𝑦𝑓𝑥 → ran (𝑓 ∩ (𝐵 × 𝐴)) = 𝐴)
5350, 52anim12i 592 . . . . 5 ((∀𝑥∃*𝑦 𝑥𝑓𝑦 ∧ ∀𝑥𝐴𝑦𝐵 𝑦𝑓𝑥) → ((𝑓 ∩ (𝐵 × 𝐴)) Fn dom (𝑓 ∩ (𝐵 × 𝐴)) ∧ ran (𝑓 ∩ (𝐵 × 𝐴)) = 𝐴))
54 df-fo 6037 . . . . 5 ((𝑓 ∩ (𝐵 × 𝐴)):dom (𝑓 ∩ (𝐵 × 𝐴))–onto𝐴 ↔ ((𝑓 ∩ (𝐵 × 𝐴)) Fn dom (𝑓 ∩ (𝐵 × 𝐴)) ∧ ran (𝑓 ∩ (𝐵 × 𝐴)) = 𝐴))
5553, 54sylibr 224 . . . 4 ((∀𝑥∃*𝑦 𝑥𝑓𝑦 ∧ ∀𝑥𝐴𝑦𝐵 𝑦𝑓𝑥) → (𝑓 ∩ (𝐵 × 𝐴)):dom (𝑓 ∩ (𝐵 × 𝐴))–onto𝐴)
56 vex 3352 . . . . . . 7 𝑓 ∈ V
5756inex1 4930 . . . . . 6 (𝑓 ∩ (𝐵 × 𝐴)) ∈ V
5857dmex 7245 . . . . 5 dom (𝑓 ∩ (𝐵 × 𝐴)) ∈ V
5958fodom 9545 . . . 4 ((𝑓 ∩ (𝐵 × 𝐴)):dom (𝑓 ∩ (𝐵 × 𝐴))–onto𝐴𝐴 ≼ dom (𝑓 ∩ (𝐵 × 𝐴)))
60 brdom3.2 . . . . . 6 𝐵 ∈ V
61 inss2 3980 . . . . . . . 8 (𝑓 ∩ (𝐵 × 𝐴)) ⊆ (𝐵 × 𝐴)
62 dmss 5461 . . . . . . . 8 ((𝑓 ∩ (𝐵 × 𝐴)) ⊆ (𝐵 × 𝐴) → dom (𝑓 ∩ (𝐵 × 𝐴)) ⊆ dom (𝐵 × 𝐴))
6361, 62ax-mp 5 . . . . . . 7 dom (𝑓 ∩ (𝐵 × 𝐴)) ⊆ dom (𝐵 × 𝐴)
64 dmxpss 5706 . . . . . . 7 dom (𝐵 × 𝐴) ⊆ 𝐵
6563, 64sstri 3759 . . . . . 6 dom (𝑓 ∩ (𝐵 × 𝐴)) ⊆ 𝐵
66 ssdomg 8154 . . . . . 6 (𝐵 ∈ V → (dom (𝑓 ∩ (𝐵 × 𝐴)) ⊆ 𝐵 → dom (𝑓 ∩ (𝐵 × 𝐴)) ≼ 𝐵))
6760, 65, 66mp2 9 . . . . 5 dom (𝑓 ∩ (𝐵 × 𝐴)) ≼ 𝐵
68 domtr 8161 . . . . 5 ((𝐴 ≼ dom (𝑓 ∩ (𝐵 × 𝐴)) ∧ dom (𝑓 ∩ (𝐵 × 𝐴)) ≼ 𝐵) → 𝐴𝐵)
6967, 68mpan2 663 . . . 4 (𝐴 ≼ dom (𝑓 ∩ (𝐵 × 𝐴)) → 𝐴𝐵)
7055, 59, 693syl 18 . . 3 ((∀𝑥∃*𝑦 𝑥𝑓𝑦 ∧ ∀𝑥𝐴𝑦𝐵 𝑦𝑓𝑥) → 𝐴𝐵)
7170exlimiv 2009 . 2 (∃𝑓(∀𝑥∃*𝑦 𝑥𝑓𝑦 ∧ ∀𝑥𝐴𝑦𝐵 𝑦𝑓𝑥) → 𝐴𝐵)
7238, 71impbii 199 1 (𝐴𝐵 ↔ ∃𝑓(∀𝑥∃*𝑦 𝑥𝑓𝑦 ∧ ∀𝑥𝐴𝑦𝐵 𝑦𝑓𝑥))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 382  wo 826  wal 1628   = wceq 1630  wex 1851  wcel 2144  ∃*wmo 2618  wne 2942  wral 3060  wrex 3061  Vcvv 3349  cin 3720  wss 3721  c0 4061   class class class wbr 4784   × cxp 5247  dom cdm 5249  ran crn 5250  Rel wrel 5254  Fun wfun 6025   Fn wfn 6026  wf 6027  ontowfo 6029  cdom 8106  csdm 8107
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-8 2146  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750  ax-rep 4902  ax-sep 4912  ax-nul 4920  ax-pow 4971  ax-pr 5034  ax-un 7095  ax-ac2 9486
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3or 1071  df-3an 1072  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2049  df-eu 2621  df-mo 2622  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ne 2943  df-ral 3065  df-rex 3066  df-reu 3067  df-rmo 3068  df-rab 3069  df-v 3351  df-sbc 3586  df-csb 3681  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-pss 3737  df-nul 4062  df-if 4224  df-pw 4297  df-sn 4315  df-pr 4317  df-tp 4319  df-op 4321  df-uni 4573  df-int 4610  df-iun 4654  df-br 4785  df-opab 4845  df-mpt 4862  df-tr 4885  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-se 5209  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-isom 6040  df-riota 6753  df-ov 6795  df-oprab 6796  df-mpt2 6797  df-1st 7314  df-2nd 7315  df-wrecs 7558  df-recs 7620  df-er 7895  df-map 8010  df-en 8109  df-dom 8110  df-sdom 8111  df-card 8964  df-acn 8967  df-ac 9138
This theorem is referenced by:  brdom5  9552  brdom4  9553
  Copyright terms: Public domain W3C validator